Толымбекова Лязат Байгабыловна, CT. преподаватель кафедры теплоэнергетики и металлургии Инновационного Евразийского университета, г.Павлодар. E-mail: lyazat-t@mail.ru Область научных интересов: отработка технологических параметров выплавки ферросиликомарганца использованием марганцевых окатышей в руднотермической печи мощностью 200 кВА. Ким Александр Сергеевич, д-р технических наук, главный научный сотрудник, профессор Химикометаллургического института им. Ж. Абишева, г. Караганда. E-mail: hmi2009@mail.ru Область научных интересов: физико-химия оксидных расплавов, подготовка металлургия черных и цветных металлов.

УДК 669.168

ОТРАБОТКА ТЕХНОЛОГИЧЕСКИХ ПАРАМЕТРОВ ВЫПЛАВКИ ФЕРРОСИЛИКОМАРГАНЦА С ИСПОЛЬЗОВАНИЕМ МАРГАНЦЕВЫХ ОКАТЫШЕЙ В РУДНОТЕРМИЧЕСКОЙ ПЕЧИ МОЩЬНОСТЬЮ 200 кВА

Л.Б. Толымбекова, А.С. Ким*

Инновационный Евразийский университет, г. Павлодар *Химико-металлургический институт им. Ж. Абишева, г. Караганда E-mail: lyazat-t@mail.ru

Показана технология выплавки стандартных марок марганцевых сплавов с использованием окускованных марганцевых материалов, полученных из некондиционного марганцевого рудного сырья (фракции 0...5 мм). Установлено, что данная технология позволяет получить ферросиликомарганец, отвечающий требованиям качества по ГОСТу 4656-91.

Ключевые слова:

Марганцевые окатыши, ферросплав, технологические параметры, глина, кокс, уголь.

Производство марганцевых ферросплавов предполагает для использования в процессе плавки фракционированной руды или концентрата.

При добыче марганцевых руд образуется большое количество мелочи (фракции менее 5 мм). Образующиеся в процессе металлургического передела (транспортировка, дробление, фракционирование готовых ферросплавов, сбор пыли с газоочистных сооружений) производственные отходы также представлены очень мелкими фракциями (-0,08 мм) и в больших количествах накапливаются в отвалах, отстойниках, на шламовых полях, занимая иногда огромные площади и вызывая при этом целый ряд проблем как экологического, так и экономического характера. Непосредственная загрузка рудной мелочи не желательна по следующим причинам: значительный пылевынос; резкие изменения нагрева печи с неустойчивым тепловым балансом плавки; перерасход кокса и др. [1, 2]. Рудная мелочь фракции 0...10 мм, в соответствии с требованиями производства должна использоваться для электротермии только в окускованном состоянии. Поэтому актуальной является задача комплексного использования марганцевых руд и возвращение мелочи процессов добычи руды в металлургическое производство [3, 1]. В связи с этим актуальными становятся работы по окускованию мелочи.

Традиционно в металлургическом производстве мелкие классы руд и концентратов окусковывают методами агломерации, грануляции и брикетирования [2].

Наиболее эффективным решением этой задачи является процесс окускования марганцевого сырья путем окатывания. Практика окатывания на тарельчатом грануляторе показывает простоту аппаратурного оформления и относительную маневренность технологии окатывания в условиях ферросплавного завода. Марганцевые окатыши, полученные с использованием в качестве связующего вещества - глину, вполне отвечают технологическим требованиям, предъявляемым к шихтовым материалам для выплавки марганцевых сплавов.

Отработку технологических параметров плавки ферросиликомарганца производили с использованием окатышей, полученных из мелочи марганцевых руд месторождения Западный Камыс. Для улучшения механических свойств марганцевых окатышей в качестве связующих веществ была использована керамзитовая глина Саздинского месторождения (г. Актюбинск), химический состав которой приведен в табл. 4. Добавка керамзитовой глины повышает максимальную молекулярную и капиллярную влагоёмкость комкуемой шихты. При этом улучшается показатель комкуемости шихты. Испытаны три вида марганцевых окатышей. В базовой технологии использованы окатыши, полученные из мелочи марганцевой руды и керамзитовой глины. Две серии плавок проведены с марганцевыми окатышами, содержащими в своем составе кокс и уголь, количество которых рассчитаны по стехиометрии для обеспечения процессов восстановления.

Химический состав исходных шихтовых материалов и восстановителей приведен в табл. 1–3.

Таблица 1. Химический состав шихтовых материалов

Наиманаранна матариана	Содержание, %									
Наименование материала	Мпобщ	Fe _{общ}	MgO	CaO	SiO_2	Al_2O_3	P	S		
Марганцевые окатыши (руда+глина)	24,5	10,29	0,60	2,64	28,24	3,36	0,034	0,025		
Марганцевые окатыши (руда+кокс+глина)	24,1	9,44	0,91	3,08	25,35	2,56	0,032	0,021		
Марганцевые окатыши (руда+кокс+уголь+глина)	23,8	8,09	0,93	2,9	25,57	1,72	0,033	0,02		
Глина	-	6.69	1,95	1,51	55,71	15,41	0,093	0,38		
Доломит	_	0,51	21,22	30,78	1,01	0,47	н.о.	0,11		
Известь	_	0,53	0,4	0,4	93,29	1,42	_	_		

Таблица 2. Технический состав углеродистых восстановителей

Можериони	Технический состав, %								
Материалы	A^{d}	W_t^r	V ^{daf}	$C_{\scriptscriptstyle TB}$					
Заринский кокс	19,38	2,44	6,09	73,86					
Борлинский уголь	51,38	0,73	16,99	30,90					

Таблица 3. Химический состав зольной части углеродистых восстановителей

Моториони	Химический состав, %										
Материалы	SiO_2	Al_2O_3	Fe _{общ}	CaO	MgO	S	P				
Заринский кокс	40,59	14,61	10,25	1,16	6,08	0,05	0,14				
Борлинский уголь	61,87	34,53	1,70	1,78	0,54	0,096	0,022				

Таблица 4. Химический состав керамзитовой глины Саздинского месторождения (г. Актюбинск)

Материал	Химический состав, %										
	SiO_2	CaO	MgO	Al_2O_3	FeO	ППП					
Глина	56,1	2,70	2,33	13,74	6,64	11,38					

В табл. 5 представлены составы калоши опытных и базовой плавок.

тиолици	тионици с. состав шихты для выплавки ферросиликомартанца												
Вариант плавки	Марганцевые окатыши	Марганцевые окатыши (руда+кокс+глина)	Марганцевые окатыши (руда+кокс+уголь+глина)	Заринский кокс	Доломит								
1	20	_	-	4,3	1,3								
2	_	20	_		1.3								
3	_	_	20		1,3								

Таблица 5. Состав шихты для выплавки ферросиликомарганца

При расчете шихты приняты следующие коэффициенты перехода компонентов в продукты плавки:

Таблица 6. Коэффициенты перехода компонентов

Компоненты	В сплав	В шлак	В улет
Марганец	75	17	8
Кремний	40	50	10

Исследования по выплавке ферросиликомарганца из марганцевых окатышей проведены в руднотермической печи мощностью 200 кВА.

Выплавку ферросиликомарганца вели непрерывным способом с загрузкой шихты по мере просадки колошника с периодическим выпуском металла и шлака через каждые 2 часа в чугунные изложницы. Металл и шлак взвешивали и отбирали пробу для химического анализа. Результаты опытных плавок приведены в табл. 7.

В период выплавки ферросиликомарганца из марганцевых окатышей технологический процесс плавки протекал равномерно: шлакования и образования «свищей» не наблюдалось, шихта равномерно опускалась самосходом, посадка электрода была глубокой, летка открывалась легко, расплав выходил активно. Визуально было отмечено, что разрушения окатышей в верхних и нижних горизонтах ванны печи не наблюдалось.

Колошник работал без свищей, с равномерным газовыделением по всей поверхности. С помощью хромель-алюмелевой (ХА) термопары определена температура на колошнике, которая составила 600...800 °C. Высота слоя шихты от подины до колошника 550...600 мм. На базовой шихте достигнута степень извлечения марганца 77,4 % при кратности шлака 1,76.

При переходе на марганцевые окатыши, содержащие в своем составе необходимое количество восстановителя (варианты 2, 3), технико-экономические показатели процесса выплавки ферросиликомарганца существенно улучшились. Так, средние показатели извлечения марганца возросли с 77,4 % до 86,1 %, кратность шлака уменьшилась с 1,76 до 1,48, на 30 % увеличилась производительность печи. Это объясняется более тесным контактом части восстановителя с марганцевой рудой в окатыше, что способствует увеличению значения коэффициента полезного действия (КПД) твердого углерода в окатыше с наименьшей потерей последнего на угар, по сравнению с базовой технологией.

Таблица 7. Результаты опытных плавок

No	X	имический	анализ м	еталла, %				Химичес	кий ана.	тиз шлака	ı, %			Bec	, кг	IC	
пл.	Mn	Si	P	S	С	MnO	SiO ₂	CaO	MgO	Al ₂ O ₃	FeO	P	S	мет.	шлак	Кратность	Основность
			ı	Į.			1	l – Тради	ционная	шихта	I				II.		
4	63,43	14,62	0,121	0,030	0,9	11,3	41,15	17,4	3,02	11,7	1,99	0,67	0,5	8,4	12	1,43	0,42
5	62,84	18,87	0,135	0,023	1,2	10,22	40,88	18,54	2,51	9,66	1,63	0,2	0,53	14,5	21,9	1,51	0,45
6	62,09	17,1	0,143	0,037	1,09	9,33	40,44	17,5	3,07	11,12	1,28	0,186	0,57	5,8	8,8	1,52	0,43
7	63,64	19,8	0,134	0,027	0,87	10,53	41,94	18,6	5,6	11,28	0,45	0,175	0,49	3,4	13,2	3,88	0,44
8	61,99	16,1	0,129	0,016	0,97	8,11	40,39	18,2	4,91	10,23	2,58	0,027	0,48	7,3	3,4	0,47	0,45
					2 – Шихт	га с приме	нением м	арганцеві	ых окать	ішей (руд	а +кокс	+ глина))				
9	63,05	16,4	0,061	0,016	1,70	7,96	42,61	19,04	3,09	10,57	0,42	0,01	0,617	8,9	15,2	1,71	0,45
10	62,34	19,13	0,063	0,015	1,61	7,23	41,84	18,85	3,85	10,85	0,4	0,027	0,624	10,7	10,4	1,16	0,45
11	61,76	16,95	0,068	0,019	1,63	8,44	41,95	18,09	3,09	10,94	0,51	0,011	0,639	10,8	7,2	0,67	0,43
12	60,91	17,26	0,070	0,013	1,59	8,96	41,38	18,61	1,42	13,4	0,39	0,01	0,63	6,7	13,3	3,03	0,45
13	62,89	16	0,062	0,012	1,58	7,95	41,9	17,87	1,43	12,06	0,53	0,02	0,64	10,2	17,4	1,70	0,43
14	61,93	18,47	0,068	0,012	1,69	8,02	40,0	19,01	3,82	15,08	0,47	0,068	0,637	6,2	12,7	2,05	0,47
				3 –	Шихта с і	применени	ем марга	нцевых о	катышей	і (руда + і	кокс + уг	оль + гл	ина)				
15	60,88	17,62	0,036	0,018	1,81	7,4	39,99	18,46	2,49	11,22	0,61	0,07	0,641	7,3	21	2,88	0,46
16	59,66	17,46	0,038	0,02	1,52	7,93	38,15	18,21	3,48	12,97	0,35	0,065	0,552	17,2	17,4	1,01	0,48
17	61,31	18,42	0,031	0,017	1,48	6,6	40,49	19,15	6,21	9,95	0,32	0,028	0,554	16,9	15,9	0,94	0,47
18	61,1	18,22	0,033	0,018	1,45	6,67	39,32	18,31	4,91	9,49	0,32	0,053	0,586	16	22,4	1,40	0,46
19	62,67	16,63	0,03	0,018	1,94	8,23	39,32	18,04	6,24	8,95	0,28	0,076	0,56	14,1	14	0,99	0,46
20	61,97	17,55	0,028	0,022	1,51	8,72	39,29	18,21	1,43	9,95	0,38	0,044	0,521	8,1	13,6	1,68	0,46

По результатам проведенных крупнолабораторных испытаний можно сделать следующие выводы:

- 1. Марганцевые окатыши имеют достаточную термическую прочность в верхних и нижних горизонтах печи.
- 2. При выплавке ферросиликомарганца с применением марганцевых окатышей наблюдается повышение степени извлечения марганца до 86,1 % против базовой 77,4 %.
- 3. Применение марганцевых окатышей приводит к снижению температуры на колошнике с 600...700 °C до 500...600 °C, что положительно сказывается на тепловом балансе плавки, что в конечном итоге может привести к экономии электроэнергии.
- 4. В целом марганцевые окатыши, полученные из мелочи марганцевых руд, имеют перспективу промышленного использования, т. к. это способствует вовлечению в производство мелкой фракции марганцевой руды.

Технология выплавки стандартных марок марганцевых сплавов с использованием окускованных материалов, полученных из некондиционного рудного сырья (фракции 0...5 мм), позволяет получить ферросиликомарганец, отвечающий требованиям качества по ГОСТу 4656-91.

СПИСОК ЛИТЕРАТУРЫ

- 1. Рысс М.А. Производство ферросплавов. М.: Металлургия, 1985. 344 с.
- 2. Вегман Е.Ф. Окускование руд и концентратов. М.: Металлургия, 1976. 224 с.
- 3. Гасик М.И. Электротермия марганца. К.: Техніка, 1979. 167 с.

Поступила 30.01.2012 г.