

УДК 622.002.5

ОПРЕДЕЛЕНИЕ СИЛОВЫХ ПАРАМЕТРОВ ТРАНСМИССИИ ГЕОХОДА С ГИДРОПРИВОДОМ

В.В. Аксенов, А.Б. Ефременков, М.Ю. Блащук, Я.Г. Рыльцева*

Юргинский технологический институт (филиал) ТПУ* Институт угля СО РАН, г. Кемерово E-mail: mby_tpu@rambler.ru

Рассмотрены полученные аналитические выражения для определения развиваемого трансмиссией геохода вращающего момента, а также определено влияние на силовые параметры трансмиссии её функционально-конструктивных особенностей и геометрических параметров геохода.

Ключевые слова:

Геоход, трансмиссия, вращающий момент, гидроцилиндр.

При разработке новых конструктивных решений трансмиссий особый интерес представляют развиваемые силовые и кинематические параметры. Одним из направлений развития компоновочных и конструктивных решений трансмиссии геоходов, реализующих непрерывный режим работы, является использование в трансмиссии гидропривода с гидроцилиндрами, работающими в разных фазах [1, 2].

Для определения конструктивных и силовых параметров трансмиссии геохода необходимо рассмотреть влияние пространственно-компоновочного расположения гидроцилиндров вращения на основной параметр – развиваемый трансмиссией вращающий момент M_{sp} .

В качестве расчетной принята схема (рис. 1) расположения гидроцилиндров внутри секций по хордам в одной плоскости, перпендикулярной оси секций геохода. При этом корпус гидроцилиндра закреплен шарнирно на хвостовой (неподвижной) секции, а шток гидроцилиндра соединен с механизмом свободного хода, передающим вращение на головную секцию. Данная схема расположения является кулисным механизмом и служит для преобразования поступательного движения штоков гидроцилиндров во вращательное движение головной секции. При выдвижении штоков будет наблюдаться изменение пространственного положения гидроцилин-

дров относительно секций.

Вращающий момент $M_{_{BPi}}$, развиваемый одним гидроцилиндром, определяется выражением (рис. 1)

$$M_{BP_i} = F_i \cdot h_{\Gamma I l_i}, \tag{1}$$

где F_i – усилие на штоке i -го гидроцилиндра, Н; $h_{\Gamma U_i}$ – плечо приложения силы i -го гидроцилиндра, м.

Усилие на штоке гидроцилиндра F_i при условии подачи жидкости в поршневую полость

$$F_i = S_{II} \cdot p_{IP}, \tag{2}$$

где $S_{II} = \frac{\pi \cdot D_{II}^2}{4}$ – площадь поршня гидроцилиндра, м²; D_{II} – диаметр поршня гидроцилиндра, м; p_{TP} – давление, подводимое в поршневую полость гидроцилиндра, Па.

Рис. 1. Расчетная схема к определению вращающего момента

Плечо $h_{\Gamma \amalg i}$ определяется из конструктивных размеров геохода. Для расчетной схемы (рис. 1) в произвольном положении штока гидроцилиндра плечо $h_{\Gamma \amalg i}$ будет определяться как

$$h_{TL_{i}} = \frac{D_{VCT.LIT}}{2} \cdot \sin \alpha, \tag{3}$$

где *D_{уст.Шт}* – диаметр окружности вращения цапфы (установки цапфы) штока на головной секции, м;

 α – угол между направлением действия силы на штоке гидроцилиндра и линией, проведенной через центр вращения O и точку B на цапфе штока.

По «теореме косинусов» из треугольника ОАВ

$$\cos \alpha = \frac{\left(\frac{D_{yCT.IIIT}}{2}\right)^{2} + (L_{0} + \delta)^{2} - \left(\frac{D_{yCT.III}}{2}\right)^{2}}{2\left(\frac{D_{yCT.IIIT}}{2}\right)(L_{0} + \delta)},$$
(4)

где $D_{yCT,III}$ – диаметр окружности установки цапф корпусов гидроцилиндров на обечайке хвостовой секции, м (фиксированное значение, определяемое конструктивно); $(L_0 + \delta)$ – расстояние между осью цапфы корпуса гидроцилиндра A и осью цапфы штока в произвольном положении, м; L_0 – расстояние между цапфами корпуса и штока гидроцилиндра в сложенном состоянии (при минимальной раздвижности), м; δ – текущая величина выдвижения штока гидроцилиндра, м.

После подстановки выражения (4) в (3) получим выражение (5)

>2))

$$h_{IIII} = \frac{D_{yCT,IIIT}}{2} \cdot \sin \left[\arccos\left(\frac{\left(\frac{D_{yCT,IIIT}}{2}\right)^2 + (L_0 + \delta)^2 - \left(\frac{D_{yCT,III}}{2}\right)^2}{D_{yCT,IIIT}(L_0 + \delta)}\right)\right]\right].$$
(5)
Bыpaзив arccos
$$\left(\frac{\left(\frac{D_{yCT,IIIT}}{2}\right)^2 + (L_0 + \delta)^2 - \left(\frac{D_{yCT,III}}{2}\right)^2}{D_{yCT,IIIT}(L_0 + \delta)}\right) \text{ через arcsin, в соответствии с [3]}$$

$$\operatorname{arccos}\left(\frac{\left(\frac{D_{yCT,IIIT}}{2}\right)^2 + (L_0 + \delta)^2 - \left(\frac{D_{yCT,III}}{2}\right)^2}{D_{yCT,IIIT}(L_0 + \delta)}\right) =$$

$$= \arcsin\sqrt{1 - \left(\frac{\left(\frac{D_{yCT,IIIT}}{2}\right)^2 + (L_0 + \delta)^2 - \left(\frac{D_{yCT,III}}{2}\right)^2}{D_{yCT,IIIT}(L_0 + \delta)}\right)}\right].$$

После преобразования с учетом sin(arcsin a) = a [3] получим выражение (6)

$$h_{TLI_{1}} = \frac{D_{VCT.IIIT}}{2} \cdot \left(1 - \left(\frac{\left(\frac{D_{VCT.IIIT}}{2} \right)^{2} + (L_{0} + \delta)^{2} - \left(\frac{D_{VCT.TI_{1}}}{2} \right)^{2}}{D_{VCT.IIIT}(L_{0} + \delta)} \right)^{2} \right)^{2}.$$
(6)

После подстановки выражений (6) и (2) в (1) получим выражение для определения момента, развиваемого одним гидроцилиндром

$$M_{BPi} = p_{TP} \cdot D_{y_{CT, IIIT}} \cdot \frac{\pi \cdot D_{II}^{2}}{8} \cdot \sqrt{1 - \left(\frac{\left(\frac{D_{y_{CT, IIIT}}}{2}\right)^{2} + (L_{0} + \delta)^{2} - \left(\frac{D_{y_{CT, III}}}{2}\right)^{2}}{D_{y_{CT, IIIT}}(L_{0} + \delta)}\right)^{2}}\right)^{2}.$$
(7)

Возможен конструктивный вариант, когда цапфы штока корпуса гидроцилиндра размещаются на одной окружности, т. е. $D_{_{VCT,IIIT}} = D_{_{VCT,III}} = D_{_{TIL}}$. В этом случае выражение (7) примет вид

$$M_{BP_{i}} = p_{TP} \cdot D_{III} \frac{\pi \cdot D_{II}^{2}}{8} \cdot \sqrt{1 - \frac{(L_{0} + \delta)^{2}}{D_{III}^{2}}}.$$
(8)

Из выражений (7) и (8) следует, что по мере выдвижения штока гидроцилиндра расстояние L_0 будет увеличиваться на величину δ , Соответственно, расстояние между опорами гидроцилиндра со штоком составит $L_0 + \delta$, а плечо $h_{\Gamma U_i}$ силы, реализующей вращающий момент на головной секции, будет изменяться, соответственно, будет изменяться и вращающий момент M_{BPi} . Величина изменения плеча силы $h_{\Gamma U_i}$, и соответственно, развиваемого момента M_{BPi} , будет зависеть от геометрических параметров расстановки опор гидроцилиндров – $D_{VCT.IIIT}$, $D_{VCT.III}$, $D_{\Gamma U}$, а также конструктивных размеров гидроцилиндров – L_0 , L_p , и длины хода штока – L_y .

Таким образом, при выдвижении штока гидроцилиндра, развиваемый вращающий момент $M_{_{BPi}}$ будет носить переменный характер.

В компоновочных схемах, где гидроцилиндры работают в разных фазах, в каждой момент времени штоки гидроцилиндров будут выдвинуты на различную величину, соответствен-

Серия 12. Машиностроение и транспорт

$$h_{III_{i}} = \frac{D_{yCT.IIIT}}{2} \cdot \sqrt{1 - \left(\frac{\left(\frac{D_{yCT.IIIT}}{2}\right)^{2} + \left(L_{0} + \frac{L_{\chi}}{n_{\phi A3} - 1} \cdot (i - 1) + \delta_{i}\right)^{2} - \left(\frac{D_{yCT.III}}{2}\right)^{2}}{D_{yCT.IIIT}\left(L_{0} + \frac{L_{\chi}}{n_{\phi A3} - 1} \cdot (i - 1) + \delta_{i}\right)}\right)^{2}},$$
(9)

где $n_{\phi A3}$ – количество промежуточных положений штоков (фаз) (выражение (10));

$$n_{\phi_{A3}} = \frac{n_{III}}{n_{OEP}},\tag{10}$$

 n_{III} — общее количество гидроцилиндров вращения, задействованных в трансмиссии; n_{OEP} — количество гидроцилиндров совершающих обратный ход. $i = 1, 2, ..., n_{III}$ — порядковый номер гидроцилиндра в группе; δ_i — текущее положение штока i -го гидроцилиндра; $\delta_i = 0... \frac{L_X}{n_{\sigma_{0A}} - 1}$.

При конструктивном исполнении, когда диаметры окружностей установки цапф штока и корпуса гидроцилиндра совпадают, т. е. $D_{yCT.IIIT} = D_{yCT.III} = D_{III}$ выражение (9) примет вид

$$h_{\Gamma \mathcal{U}_i} = \frac{D_{\Gamma \mathcal{U}_i}}{2} \cdot \sqrt{1 - \left(\frac{L_0 + \frac{L_X}{n_{\phi A \beta} - 1} \cdot (i - 1) + \delta_i}{D_{\Gamma \mathcal{U}_i}}\right)^2}$$

Момент, развиваемый і -м гидроцилиндром в группе

$$M_{BP_{i}} = p_{TP} \cdot D_{YCT.IIIT} \cdot \frac{\pi \cdot D_{II}^{2}}{8} \cdot \left(1 - \left(\frac{\left(\frac{D_{YCT.IIIT}}{2} \right)^{2} + \left(L_{0} + \frac{L_{X}}{n_{\phi A3} - 1} \cdot (i - 1) + \delta_{i} \right)^{2} - \left(\frac{D_{YCT.III}}{2} \right)^{2} \right)^{2} + \left(L_{0} + \frac{L_{X}}{n_{\phi A3} - 1} \cdot (i - 1) + \delta_{i} \right)^{2} - \left(\frac{D_{YCT.III}}{2} \right)^{2} \right)^{2} + \left(L_{0} + \frac{L_{X}}{n_{\phi A3} - 1} \cdot (i - 1) + \delta_{i} \right)^{2} - \left(\frac{D_{YCT.III}}{2} \right)^{2} \right)^{2} + \left(L_{0} + \frac{L_{X}}{n_{\phi A3} - 1} \cdot (i - 1) + \delta_{i} \right)^{2} - \left(\frac{D_{YCT.III}}{2} \right)^{2} \right)^{2} + \left(L_{0} + \frac{L_{X}}{n_{\phi A3} - 1} \cdot (i - 1) + \delta_{i} \right)^{2} - \left(\frac{D_{YCT.III}}{2} \right)^{2} + \left(L_{0} + \frac{L_{X}}{n_{\phi A3} - 1} \cdot (i - 1) + \delta_{i} \right)^{2} - \left(\frac{D_{YCT.III}}{2} \right)^{2} + \left(L_{0} + \frac{L_{X}}{n_{\phi A3} - 1} \cdot (i - 1) + \delta_{i} \right)^{2} - \left(\frac{D_{YCT.III}}{2} \right)^{2} + \left(L_{0} + \frac{L_{X}}{n_{\phi A3} - 1} \cdot (i - 1) + \delta_{i} \right)^{2} + \left(L_{0} + \frac{L_{X}}{n_{\phi A3} - 1} \cdot (i - 1) + \delta_{i} \right)^{2} + \left(L_{0} + \frac{L_{X}}{n_{\phi A3} - 1} \cdot (i - 1) + \delta_{i} \right)^{2} + \left(L_{0} + \frac{L_{X}}{n_{\phi A3} - 1} \cdot (i - 1) + \delta_{i} \right)^{2} + \left(L_{0} + \frac{L_{X}}{n_{\phi A3} - 1} \cdot (i - 1) + \delta_{i} \right)^{2} + \left(L_{0} + \frac{L_{X}}{n_{\phi A3} - 1} \cdot (i - 1) + \delta_{i} \right)^{2} + \left(L_{0} + \frac{L_{X}}{n_{\phi A3} - 1} \cdot (i - 1) + \delta_{i} \right)^{2} + \left(L_{0} + \frac{L_{X}}{n_{\phi A3} - 1} \cdot (i - 1) + \delta_{i} \right)^{2} + \left(L_{0} + \frac{L_{X}}{n_{\phi A3} - 1} \cdot (i - 1) + \delta_{i} \right)^{2} + \left(L_{0} + \frac{L_{X}}{n_{\phi A3} - 1} \cdot (i - 1) + \delta_{i} \right)^{2} + \left(L_{0} + \frac{L_{X}}{n_{\phi A3} - 1} \cdot (i - 1) + \delta_{i} \right)^{2} + \left(L_{0} + \frac{L_{X}}{n_{\phi A3} - 1} \cdot (i - 1) + \delta_{i} \right)^{2} + \left(L_{0} + \frac{L_{X}}{n_{\phi A3} - 1} \cdot (i - 1) + \delta_{i} \right)^{2} + \left(L_{0} + \frac{L_{X}}{n_{\phi A3} - 1} \cdot (i - 1) + \delta_{i} \right)^{2} + \left(L_{0} + \frac{L_{X}}{n_{\phi A3} - 1} \cdot (i - 1) + \delta_{i} \right)^{2} + \left(L_{0} + \frac{L_{X}}{n_{\phi A3} - 1} \cdot (i - 1) + \delta_{i} \right)^{2} + \left(L_{0} + \frac{L_{X}}{n_{\phi A3} - 1} \cdot (i - 1) + \delta_{i} \right)^{2} + \left(L_{0} + \frac{L_{X}}{n_{\phi A3} - 1} \cdot (i - 1) + \delta_{i} \right)^{2} + \left(L_{0} + \frac{L_{X}}{n_{\phi A3} - 1} \cdot (i - 1) + \delta_{i} \right)^{2} + \left(L_{0} + \frac{L_{X}}{n_{\phi A3} - 1} \cdot (i - 1) + \delta_{i} \right)^{2} + \left(L_{0} + \frac{L_{X}}{n_{\phi A3} - 1} \cdot (i - 1) + \delta_{i} \right)^{$$

Результирующий момент, развиваемый гидроцилиндрами в разных фазах движения, представляет сумму моментов, развиваемых каждым гидроцилиндром в текущем положении

$$M_{BP} = n_{TP} \sum_{i=1}^{n_{PAG,PP}} p_{TP} \cdot D_{yCT.IIIT} \cdot \frac{\pi \cdot D_{II}^{-2}}{8} \times \sqrt{1 - \left(\frac{\left(\frac{D_{yCT.IIIT}}{2}\right)^{2} + \left(L_{0} + \frac{L_{X}}{n_{\phiA3} - 1} \cdot (i - 1) + \delta_{i}\right)^{2} - \left(\frac{D_{yCT.III}}{2}\right)^{2}}{D_{yCT.IIIT} \left(L_{0} + \frac{L_{X}}{n_{\phiA3} - 1} \cdot (i - 1) + \delta_{i}\right)}\right)^{2}},$$

где *n*_{*ГР*} – количество групп гидроцилиндров, находящихся в разных фазах выдвижения; *n*_{*PAE*.*ГР*} – число гидроцилиндров в группе, совершающих рабочий ход.

При совпадении диаметров окружностей размещения цапф корпусов и штоков гидроцилиндров, т. е. $D_{yCT.IIIT} = D_{yCT.III} = D_{III}$, момент, развиваемый *i*-м гидроцилиндром будет определяться выражением

$$M_{BPi} = p_{TP} \cdot D_{\Gamma \mathcal{U}} \cdot \frac{\pi \cdot D_{\Pi}^2}{8} \cdot \sqrt{1 - \left(\frac{L_0 + \frac{L_X}{n_{\partial A3} - 1} \cdot (i - 1) + \delta_i}{D_{\Gamma \mathcal{U}}}\right)^2}.$$

Результирующий момент, развиваемый всеми гидроцилиндрами совершающими рабочий ход

$$M_{BP} = n_{IP} \sum_{i=1}^{n_{PAE}} p_{TP} \cdot D_{III} \cdot \frac{\pi \cdot D_{II}^{2}}{8} \sqrt{1 - \left(\frac{L_{0} + \frac{L_{X}}{n_{\phi A3} - 1} \cdot (i - 1) + \delta_{i}}{D_{III}}\right)^{2}}$$

По полученным аналитическим выражениям были построены зависимости и определено влияние конструктивных параметров (диаметр поршня) и количества гидроцилиндров на величину развиваемого трансмиссией вращающего момента (рис. 2) для заданного диаметра головной секции геохода ($D_{\Gamma C}$) и величины давления в гидросистеме p_{TP} .

Полученные графические зависимости (рис. 2), построенные для диаметров геоходов типоразмерного ряда проходческих щитов ЦНИИподземмаша (таблица) позволяют определить соотношение количества гидроцилиндров $(n_{\Gamma II})$ в трансмиссии и диаметра поршня (D_{II}) в зависимости от требуемого вращающего момента $(M_{BP,TP})$ на головной секции.

Рис. 2. Зависимости развиваемого трансмиссией вращающего момента от количества гидроцилиндров $n_{\Gamma II}$ и диаметра поршня D_{II}

П								
Параметры геохода	$n_{\Gamma \amalg}$, ШТ							
<i>D_{ГС}</i> =2,1 м; <i>M_{ВР.ТР}</i> =0,37 МН∙м	4	5	6	7	8	10	12	14
$D_{\varPi},$ м	0,125	0,09	0,08	0,07	0,063	0,056	0,05	0,045
M_{BP} , МН·м	0,447	0,381	0,406	0,393	0,383	0,403	0,402	0,391
<i>D</i> _{<i>ГС</i>} =2,6 м; <i>M</i> _{<i>BP</i>.<i>TP</i>} =0,73 МН⋅м								
<i>D</i> _П , м	0,16	0,125	0,1	0,09	0,08	0,07	0,063	0,056
M_{BP} , МН·м	0,896	0,887	0,785	0,799	0,763	0,78	0,789	0,75
<i>D_{ГС}</i> =3,2 м; <i>M_{BP.TP}</i> =1,43 МН∙м								
$D_{\varPi},$ м	0,18	0,16	0,125	0,1	0,09	0,08	0,07	0,063
M_{BP} , МН·м	1,441	1,597	1,505	1,471	1,465	1,578	1,561	1,44
<i>D_{ГС}</i> =4,1 м; <i>M_{ВР.ТР}</i> =4,43 МН·м								
<i>D</i> _П , м	_	0,2	0,18	0,16	0,125	0,1	0,09	0,08
M_{BP} , MH·м	_	4,119	4,096	4,032	3,631	3,86	3,751	3,752
<i>D</i> _{<i>ГС</i>} =5,6 м; <i>M</i> _{<i>BP</i>.<i>TP</i>} =10,7 МН∙м								
<i>D</i> _П , м	_	_	_	_	0,22	0,18	0,16	0,16
M_{BP} , MH·м	_	_	_	_	11,96	10,85	10,76	12,79

Таблица. Силовые параметры трансмиссии геоходов типоразмерного ряда проходческих щитов ЦНИИподземмаша

Серия 12. Машиностроение и транспорт

На рис. 3 и 4 представлены графики влияния соотношения диаметров расстановки опор штока и корпуса гидроцилиндра на развиваемый трансмиссией вращающий момент.

Рис. 3. Зависимости развиваемого трансмиссией вращающего момента $M_{_{BP}}$ от взаимного расположения опор гидроцилиндра $D_{_{YCT.IIIT}}$, $D_{_{YCT.IIIT}}$

Рис. 4. Зависимость величины вращающего момента M_{BPi} (в % от максимального значения момента M_{max}) от отношения диаметров установки опор гидроцилиндра $D_{yCT,IIIT} / D_{yCT,III}$

Наибольший момент реализуется при равноудаленности опор гидроцилиндра от продольной оси секции, т. е. при равенстве диаметров установки опор – $D_{yCT.IIIT} = D_{yCT.III}$ (рис. 3). С увеличением разности в диаметрах установки опор развиваемый момент будет снижаться. Соотношение диаметров расстановки опор будет влиять на изменение момента по мере выдвижения штоков. При разности диаметров до 15 % максимальный момент реализуется в начале хода, а минимальный – в конце хода штока. При разности диаметров от 15 до 25 % будет наблюдаться пик развиваемого момента, который будет смещаться от начала к концу хода штока. При увеличении свыше 25 % – максимальный момент будет реализовываться в конце хода штока гидроцилиндра.

Зависимость величины вращающего момента M_{BPi} (в % от максимального значения момента M_{max}) от отношения диаметров установки опор гидроцилиндра $D_{yCT.IIIT} / D_{yCT.III}$ (рис. 4) показывает, что при увеличении разности в диаметрах $D_{yCT.IIIT}$, $D_{yCT.IIIT}$, от 0 до 30 % величина развиваемого вращающего момента уменьшается от 75 до 60 % при числе гидроцилиндров $n_{III} = 5...14$ шт.

СПИСОК ЛИТЕРАТУРЫ

- 1. Аксенов В.В., Ефременков А.Б., Тимофеев В.Ю., Блащук М.Ю. Разработка и анализ возможных вариантов гидропривода в трансмиссии геохода // Горный информационноаналитический бюллетень. – 2010. – ОВ № 3. – С. 184–193.
- 2. Аксенов В.В., Ефременков А.Б., Тимофеев В.Ю., Блащук М.Ю. Разработка вариантов компоновочных решений гидравлической трансмиссии геохода // Инновационные технологии и экономика в машиностроении: Сборник трудов Междунар. научно-практ. конф. с элементами научной школы для молодых ученых. Томск, 2010. С. 461–466.
- 3. Выгодский М.Я. Справочник по элементарной математике. М: АСТ: Астрель, 2006. 509 с.

Поступила 14.02.2012 г.