Гаранин Георгий Викторо- вич, зав. лаб. кафедры общей физики Физико-технического института ТПУ.

E-mail: garanin_gv@tpu.ru Область научных интересов: физико-химические и радиационные проблемы материаловедения.

Ларионов Виталий Василь-евич, д-р физ.-мат. наук, профессор кафедры общей физики Физико-технического института ТПУ.

E-mail: lvv@tpu.ru

Область научных интересов: экспериментальные исследования поведения водорода в металлах.

Лидер Андрей Маркович, канд. физ.-мат. наук, доцент кафедры общей физики Физико-технического института ТПУ.

E-mail: lider@tpu.ru

Область научных интересов: физико-химические и радиационные проблемы материаловедения.

УДК 621.386.12 +539.16.04

ЛАБОРАТОРНАЯ УСТАНОВКА ДЛЯ ИЗМЕРЕНИЯ СКОРОСТИ РАСПРОСТРАНЕНИЯ УЛЬТРАЗВУКОВЫХ ВОЛН В НАВОДОРОЖЕННЫХ МЕТАЛЛАХ

Г.В. Гаранин, В.В. Ларионов, А.М. Лидер

Томский политехнический университет E-mail:garanin gv@tpu.ru

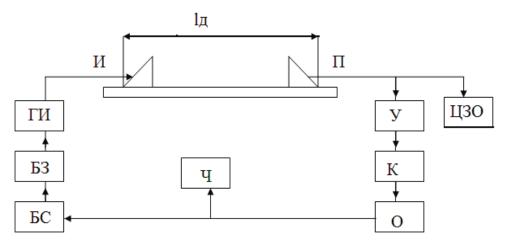
Описана лабораторная установка и приведены ее технические параметры. Показано, что схема измерений с высокой степенью точности позволяет определять содержание водорода в металлах на основе легких сплавов. Даны конкретные рекомендации по использованию разработанного устройства

Ключевые слова:

Ультразвуковые волны, легкие сплавы, наводороживание металлов.

Введение

Развитие космической техники, атомной энергетики, ракето- и самолетостроения, газотурбинных двигателей требует создания устройств для контроля за содержанием водорода в изделиях из легких сплавов на основе титана для увеличения ресурсов их эксплуатации, исключения и прогнозирования причин водородной деградации изделий из титана, являющегося основой многочисленных деталей в перечисленных отраслях промышленности. Одним из распространенных методов контроля водородного воздействия на металлы легких


сплавов являются методы прямого воздействия на материал [1, 2]. Материал растягивают на испытательной машине, определяют предельную прочность и относительное удлинение до разрыва детали. Водородное охрупчивание металлов определяют на основе измерения микротвердости, термо-эдс, вихревых токов высокой частоты [3]. Содержание водорода определяют измерением скорости распространения ультразвуковых волн [4].

Физической основой контроля является зависимость скорости распространения акустических волн от физических свойств металлов, в частности от степени наводороженности металла. Наиболее эффективным методом измерения скорости распространения ультразвуковой (рэлеевской) волны в образцах является метод автоциркуляции. Применение рэлеевских волн в металлах обусловлено особенностями данных волн: 1) возможностью «вывести» акустический сигнал из любой точки поверхности образца, по которому распространяется волна, 2) относительно большой концентрацией энергии в волне вследствие малости слоя локализации волны.

Экспериментальная часть

Для исследования использовали образцы из титанаВТ1-0 вдоль различных направлений проката исходного листа в виде прямоугольных листов с размером рабочей части 90×40 мм. Исходные образцы подвергали отжигу в вакууме в течение одного часа при температуре 750 °C с последующим охлаждением в печи. Образцы титана ВТ1-0 насыщали водородом на установке PCI«GasReactionController» по методу Сивертса. Интегральное содержание водорода в образ-

цах титана контролируют плавлением на установке фирмы RHEN 602 LECO. Лабораторная установка для измерения скорости ультразвуковых (УЗ) волн приведена на рис. 1. Установка включает электронно-счетный частотомер Ч3-85/3, генератор импульсов Tabor 8500, цифровой запоминающий осциллограф Tektronix TDS 2024B, пьезопреобразователи с резонансной частотой 5 МГц. Измерения осуществляются следующим образом: генератор формирует импульс, который через излучатель создает в образце рэлеевскую волну. Импульс возбуждения распространяется по образцу и регистрируется приемником. Контроль параметров импульса обеспечивается с помощью цифрового осциллографа. Далее импульс усиливается широкополосным усилителем, компаратор по заданному порогу формирует логический сигнал, который запускает одновибратор для формирования синхронизирующего импульса заданной длительности. Импульс с выхода одновибратора подается на измерительный вход частотомера и на синхронизирующий вход генератора, замыкая тем самым петлю обратной связи генератора. Используемая система расположения датчиков акустического стенда позволяет измерять частоту автоциркуляции в зависимости от расстояния между датчиками и их положения по длине образца. Для автоматизации системы измерения и сбора данных используется программное обеспечение, разработанное в инженерной среде LabView.

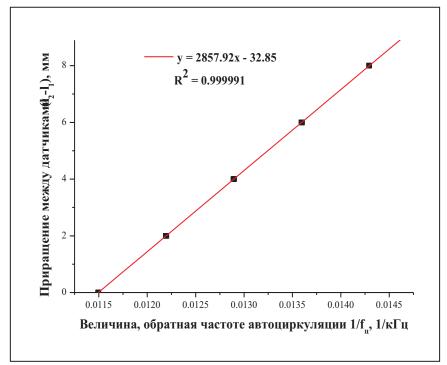
Рис. 1. Схема лабораторного устройства для измерения скорости распространения ультразвуковых волн в металле: $l_{\rm II}$ — базовое расстояние между излучателем и приемником; И — излучатель; П — приемник; У — широкополосный усилитель; К — компаратор; О — одновибратор; Ч — частотомер; БС — блок синхронизации; БЗ — блок задержки; ГИ — импульсный генератор; ЦЗО — цифровой запоминающий осциллограф

Для определения скорости распространения УЗ (рэлеевской) волны в металле необходимо измерить частоту автоциркуляции. Частота автоциркуляции зависит от времени распространения сигнала по образцу титана и по цепям обратной связи и равна:

$$f_{II} = \frac{1}{t_{3AII} + t_{AII} + t_{OEP}},\tag{1}$$

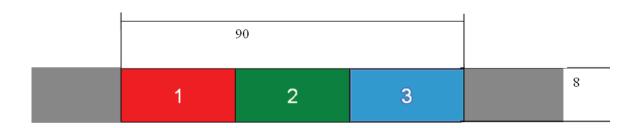
где t_{3AJ} — время задержки возбуждающего импульса относительно запускающего импульса; t_{AII} — время задержки сигнала, определяющееся используемой аппаратурой; t_{OEP} — время распространения волны в образце. Скорость распространения ультразвуковой волны в образце титана:

$$V_R = \frac{l_{\mathcal{A}}}{t_{OEP}},\tag{2}$$


где $l_{\mathcal{I}}$ — базовое расстояние между излучателем и приемником датчика. Из уравнений (1) и (2) получают формулу для определения скорости ультразвука:

$$V_{R} = \frac{l_{\mathcal{A}}}{\frac{1}{f_{II}} - (t_{3A\mathcal{A}} + t_{AII})} = \frac{l_{\mathcal{A}} f_{II}}{1 - (t_{3A\mathcal{A}} + t_{AII}) \cdot f_{II}}.$$
 (3)

Точность измерения скорости V_R можно увеличить путем изменения базового расстояния $l_{\mathcal{I}}$. В этом случае выражение (3) для V_R принимает вид


$$V_R = \frac{l_{\mathcal{A}_{-1}} - l_{\mathcal{A}_{-2}}}{\frac{1}{f_{\mathcal{U}_{-1}}} - \frac{1}{f_{\mathcal{U}_{-2}}}}.$$
 (4)

В выражении (4) измеряемыми параметрами являются базовые длины датчика и соответствующая им частота автоциркуляции. Точность измерения V_R зависит от точности изменения базы $l_{\mathcal{J}i}$. При этом величина V_R определяется из уравнения линейной регрессии V_R от $1/f_{\mathcal{L}i}$; $l_{\mathcal{J}i}$ (рис. 2). Значение коэффициента $R^2=1$ свидетельствует о высокой методической и аппаратурной точности схемы акустических измерений для определения скорости распространения ультразвуковой (рэлеевской) волны.

Рис. 2. Связь между обратной частотой автоциркуляции и изменением расстояния между датчиками измерительной установки

В качестве основных применяли датчики с резонансной частотой 5 МГц. Начальное расстояние между датчиками выбрано равным $l_{\mathcal{I}}-20$ мм. Измерение частоты автоциркуляции осуществляли с шагом 5...10 мм по длине рабочей части образца не менее чем в 12 точках. Схематично области 1–3 измерения представлены на рис. 3. Для увеличения точности измерения необходимо проводить в 5 точках при каждом из положений датчиков при исходном базовом расстоянии между датчиками и с приращением расстояния между датчиками на 2, 4, 6 и 8 мм. График зависимости скорости рэлеевской волны от концентрации водорода в образце показан на рис. 4. С увеличением концентрации водорода в испытуемом образце в диапазоне концентраций от 0 до 0,21 массовых процента скорость рэлеевской волны линейно возрастает. Наводороживание титанового сплава ВТ1-0 в данном интервале концентраций приводит к росту внутренних напряжений, к росту модуля упругости (соответственно увеличению скорости распространения УЗ волн). Уменьшение скорости рэлеевской волны в диапазоне концентраций водорода в образце от 0,21 до 0,60 массовых % объясняется образованием множественных дефектов и значительным ухудшением прочностных характеристик материала.

Рис. 3. Пример образца из титана. 1, 2, 3 – области, в которых проводят измерения скорости распространения ультразвуковой волны.

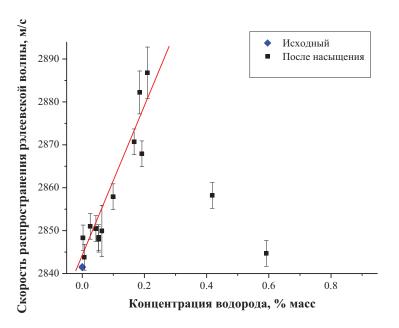
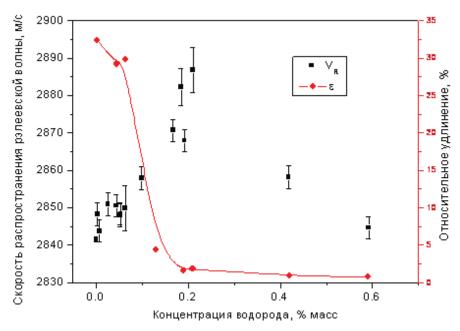



Рис. 4. Зависимость скорости ультразвуковой волны от концентрации водорода в образце титана

Для сравнения полученных выводов акустическим методом и методом нагружения (удлинения) образцов на рис. 5 приведены соответствующие зависимости от концентрации водорода. Наблюдается однозначная корреляция между началом значительного увеличения скорости ультразвуковой (рэлеевской) волны в образце и потерей пластичности в нем. На рис. 6 приведено изменение скорости УЗ волн от концентрации водорода в титане. Обнаруженная зависимость имеет ярко выраженный максимум и состоит из двух ветвей. Восходящая ветвь имеет вид, характерный для различных марок наводороженных сталей, нисходящая аналогична наводороженному палладию. Это может свидетельствовать об уникальных свойствах наводороженных легких сплавов на основе титана.

Рис. 5. Скорость распространения ультразвуковой волны в наводороженном титане и относительное удлинение образца от концентрации водорода в титане

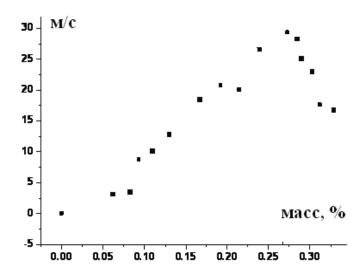


Рис. 6. Зависимость изменения скорости ультразвуковой волны от содержания водорода в титане

Во всех экспериментах наблюдается четкая корреляция между относительным изменением скорости рэлеевской волны по длине образца и содержанием водорода. Чем больше концентрация водорода в титане ВТ1-0, тем больше отклонение точек графика функции, отражающего зависимость между относительным значением скорости рэлеевской волны и положением датчика в наводороженных образцах. Выявлено, что после наводороживания по методу Сиверста относительное распределение скорости рэлеевской волны по длине образцов является неравномерным. На неравномерность пространственного распределения упругих свойств оказывает влияние неоднородность насыщения образцов с размерами рабочей части 90×8 мм из-за существующего температурного градиента по длине камеры, в которой происходит насыщение сплава ВТ1-0 водородом.

Заключение

Разработана лабораторная установка, позволяющая проводить измерения содержания водорода в легких сплавах по скорости распространения УЗ-волн. Эффективность измерений зависит от выбора частоты автоциркуляции, базового расстояния между приемником и излучателем и контролируется посредством корреляции между скоростью ультразвуковых волн и величиной обратной частоте автоциркуляции. Эта связь должна быть линейной. Устройство может быть применено для анализа содержания водорода в легких сплавах.

СПИСОК ЛИТЕРАТУРЫ

- 1. Коттерилл П.В. Водородная хрупкость металлов. М.: Металлургиздат, 1963. 245 с.
- 2. Ткачев В.И., Витвицкий В.И., Холодный В.И. Сравнительная оценка водородостойкости сталей и сплавов // Материаловедение. 2006. № 1. С. 54–56.
- 3. Чернов И.П., Черданцев Ю.П., Мамонтов А.П., Панин А.В., Никитенков Н.Н., Лидер А.М., Гаранин Г.В. и др. Неразрушающие методы контроля водородного охрупчивания конструкционных материалов // Альтернативная энергетика и экология. − 2009. − № 2. − С. 15–22.
- 4. Yang C.-H., Huang M.-F. Characterization of hydrogen concentration in Zircaloy claddings using a low-frequency acoustic microscope with a PVDF/LFB transducer // J. Nucl. Mater. − 2004. − V. 335. −№ 3. − P. 359–365.

Поступила 10.05.2012 г.