Карепина Ксения Васильевна, магистрант кафедры геоэкологии и геохимии Института природных ресурсов ТПУ.

E-mail: ksusha55-89@mail.ru Область научных интересов: геология, геохимия, минерагения.

Домаренко Виктор Алексеевич, канд. геол.-минерал. наук, доцент кафедры геоэкологии и геохимии Института природных ресурсов ТПУ. E-mail:

viktor_domarenko@mail.ru

Область научных интересов: минерагения. геологоэкономическая оценка месторождений полезных ископаемых.

Рихванов Леонид Петрович,

д-р геол.-минерал. наук, профессор кафедры геоэкологии и геохимии Института природных ресурсов ТПУ.

E-mail: richvanovlp@tpu.ru Область научных интересов: геология, геохимия, минерагения, радиоэкология.

3. Ганькинская свита (K₂–P1gn).

Мощность железоносной части разреза в пределах Бакчарского месторождения сильно сокращена за счет многочисленных размывов отложений и достигает всего 20...80 м.

УДК 553.31:550.42:552.56

РЕДКИЕ И РАДИОАКТИВНЫЕ ЭЛЕМЕНТЫ В ЖЕЛЕЗНЫХ РУДАХ ЗАПАДНО-СИБИРСКОГО ЖЕЛЕЗОРУДНОГО ПОЯСА НА ПРИМЕРЕ БАКЧАРСКОГО УЗЛА (ТОМСКАЯ ОБЛАСТЬ)

К.В. Карепина, В.А. Домаренко, Л.П. Рихванов

Томский политехнический университет E-mail: viktor_domarenko@mail.ru

Возможности роста мощностей урановой промышленности в наше время остаются крайне ограниченными. В связи с этим был изучен Бакчарский рудный узел на предмет обнаружения минералов урана. Рассмотрены результаты анализов, полученные на электронном микроскопе – были обнаружены собственные минералы редкоземельных и радиоактивных элементов в минералах железа. Повышенные значения, выявленные по геофизическим данным, позволяют надеяться на обнаружение повышенных значений концентрации собственных минералов урана в благоприятных обстановках его осадконакопления.

Ключевые слова:

Бакчарский рудный узел, железные руды, редкие земли, гамма-активность, содержание урана и тория.

Бакчарский железорудный узел, являющийся частью Западно-Сибирского пояса, расположен в Бакчарском административном районе Томской области, в междуречье рек Андармы и Иксы, в 120...180 км к западсеверо-западу от Томска.

Оруденение локализуется в трёх горизонтах (снизу вверх) (рис. 1):

1. Верхнемеловые отложения ипатовской свиты (K₂ip).

2. Славгородская свита (K₂sl).

Рис. 1. Схематическая карта Западно-Сибирского железорудного бассейна: 1 – складчатое обрамление; 2 – отложения чехла Западно-Сибирской плиты; 3 – площадь распространения мезозойско-кайнозойских отложений Западно-Сибирского железорудного пояса; 4 – железорудные узлы: а) Бакчарский; б) Колпашевский; в) Парабель-Чузикский; г) Парбигский.

По литолого-петрографическим особенностям выделяют шесть типов руд [1, 2]: 1) плотные гетит-гидрогетитовые с сидеритовым цементом; 2) рыхлые гетит-гидрогетитовые; 3) лептохлоритовые с хлорит-сидеритовым цементом; 4) конгломератовидные лептохлоритовые с крупными оолитами; 5) сидеритовые; 6) глауконитовые с сидеритовым цементом (табл. 1, рис. 2).

Минерац	Содержание, %			
титерал	Проба 1	Проба 2	Проба 3	
Кварц	7,2	21,2	18,8	
Гидрогётит	67,9	57,3	56,9	
Сидерит	0,6	0,2	0,3	
Кальцит	0,5	0,4	0,4	
Магнезиальный хлорит	0,8	2,1	2,3	
Лептохлорит	0,9	0,6	2,4	
Полевые шпаты	5,3	3,5	4,6	
Серицит	4,2	6,0	5,6	
Каолинит	10,6	7,4	7,3	
Рутил	0,4	0,3	0,3	
Фосфаты, в том числе фосфаты РЗЭ (кулларит)	1,6	1,0	1,1	

Таблица 1. Вещественный состав рыхлых руд Бакчарского узла

Рис. 2. Алевропесчаник с дресвяно-крупнопсаммитовой примесью и вторично окисленным гётитом, лептохлоритом и сидеритом

Анализ данных по изучению радиометрической характеристики рудовмещающей толщи и руд выявил следующие особенности: в пределах рудного узла выделяются горизонты с повышенной радиоактивностью. Первый горизонт находится на глубине до 30 м с активностью до 65 мкР/ч (рис. 3, a, δ). Он протягивается по всей площади участка и литологически приурочен к серым, серо-голубым глинам с включениями древесных остатков (рис. 3, a).

Рис. 3. Ореолы повышенной радиоактивности по данным гамма-каротажа скважин

Второй горизонт находится на глубинах от 173 до 230 м (рис. 3, б) и приурочен к рудовмещающим железоносным отложениям.

Анализ вещественного состава рудовмещающих отложений и геохимических особенностей рудоносных отложений убедительно показывает, что повышение радиоактивности связано с наличием редкоземельно-ториевой и урановой минерализации.

Для изученных железных руд характерен весьма широкий и пестрый по составу перечень компонентов. В рудах, по данным инструментального нейтронного активационного анализа, содержатся следующие попутные компоненты: Sc, Cr, Co, Sb, редкие земли и Au. Концентрации Na, Ca, Rb, Cs, Ba в них отчетливо понижены, а содержания Sr и Ag не превышают порога чувствительности анализа (табл. 2).

		Wanaaaaa		Осадочные	
Железные руды	лелезосодержащие	Глонионит	породы	Осадочные	
DIENENE	с содержанием Fe	осадки	Глаукониї,	с содержанием	породы
лементы, г/т (%)	более 30 %	с содержанием Бо 20 30 %	прупповая	Fe 1020 %	с содержанием Fe
1/1 (70)	(среднее из 3 проб)	(среднее из 8 проб)	проба	(среднее из 9	менее 10 %
		(среднее из в проо)		проб)	
Fe, %	36,743,6	2029,2	20,0	14,119,5	5,2
Co	6,658,2	17,539,7	29,6	22,530,7	10,9
Sc	11,924,8	18,939,2	21,4	10,228,0	13,5
Cr	63,2398	101,1444,3	249,3	193,1224,9	276,1
As	23,1	2,113	4,7	0,84,3	2,0
Sb	1,17,4	1,18,9	7,2	1,12,3	менее 1,1
Ba	менее 290	290663	менее 290	менее 290	менее 290
Sr	менее 430	430694	менее 430	430913	менее 430
Rb	40723	40290	менее 40	40171	129
Cs	менее 1,8	1,83,4	4,1	1,85,8	3,5
La	7,256	36,886,4	71,6	7,283,3	23,4
Ce	86,2410,5	106385,9	243,0	56,6112,4	5,6
Sm	2,132,8	10,828,3	15,1	1,317,6	6,0
Nd	2881,9	2895,2	менее 28	2846,2	менее 2,8
Tb	15,1	3,75,9	6,8	1,14,7	1,0
Eu	1,29,98	2,48,7	3,9	2,95,7	1,8
Lu	0,811,1	0,312,0	0,33	0,611,8	0,88
Yb	2,45,2	5,66,9	2,1	2,46,5	2,1
Hf	0,53,2	3,84,7	менее 0,5	0,55,4	2,2
Th	0,411,6	0,410,7	11,4	0,48,1	менее 0,4
Ca, %	2,86,8	39,4	менее 3	39,2	менее 3
Na, %	0,070,1	0,10,45	0,08	0,010,24	0,3

Таблица 2. Микроэлементный состав руд и рудовмещающих пород Западного участка Бакчарского месторождения по данным инструментального нейтронно-активационного анализа

Существенные концентрации урана [3] установлены в слабосцементированных лептохлоритовых (2,6 г/т) и рыхлых оолитовых гетит-гидрогетитовых (2,5 г/т) рудах. Наименьшие уровни накопления (1,3 г/т) характерны для плотных оолитовых гетит-гидрогетитовых руд. В лептохлоритовых рудах также относительно повышены концентрации тория (14,2 г/т). Глауконитовые рудные песчаники отличаются пониженными содержаниями тория (8,2 г/т).

В отдельных пробах плотных оолитовых гетит-гидрогетитовых руд и их рыхлых разностях зафиксированы концентрации металла 8,6 и 8,0 г/т, соответственно. В последнем случае вероятно влияние диагенетических и эпигенетических процессов, ведущих к перераспределению элементов. Наибольшие концентрации урана (20 г/т) зафиксированы в плотных оолитовых гетит-гидрогетитовых рудах и их рыхлых окисленных разностях (8 г/т). В последнем случае вероятно влияние эпигенетических процессов, ведущих к перераспределению элемента (Th/U имеет урановую природу 1,5). В ряде проб радиоактивность имеет ярко выраженную урановую природу при торий-урановом отношении, снижающемся до 0,5 [4].

В породах и рудах относительно повышено содержание тория. Его максимальные содержания достигают 31 г/т в рудном концентрате (проба БК-2), а минимальные – 1 г/т. Торий, по-видимому, концентрируется в редкоземельных фосфатах, которые постоянно отмечаются в рудах (рис. 4), которые развиваются по зонам роста оолитов гётита.

Element	AN	series	Net	[wt. %]	[norm. wt. %]	[norm. at. %]	Error in %
Carbon	6	K-series	29542	11,45281	12,53975	23,59532	1,450955
Oxygen	8	K-series	92167	40,82632	44,70096	63,1436	4,645545
Aluminium	13	K-series	2430	0,19531	0,213846	0,179123	0,035969
Silicon	14	K-series	23469	1,296154	1,419166	1,142003	0,081492
Phosphorus	15	K-series	116761	7,144758	7,822835	5,708033	0,302714
Sulfur	16	K-series	1750	0,10548	0,115491	0,081399	0,051482
Calcium	20	K-series	8928	0,568729	0,622704	0,35115	0,043081
Iron	26	K-series	17291	2,275237	2,49117	1,008137	0,090081
Lanthanum	57	L-series	96771	9,413034	10,30638	1,676884	0,353335
Cerium	58	L-series	136871	14,11967	15,4597	2,493546	0,691823
Neodymium	60	L-series	26609	3,099665	3,39384	0,531768	0,347723
Thorium	90	M-series	6527	0,834919	0,914158	0,089039	0,059001
			Sum:	91.33209	100	100	

Серия Науки о Земле

Рис. 4. Состав микровключений в оолитовых железных рудах Бакчарского проявления по данным электронной микроскопии: 1–3) редкоземельный фосфат – кулларит; 4–6) циркон; 7–9) галенит; 10–12) коффинит

При сопоставлении выборок, сгруппированных по классам содержания железа, обращает на себя внимание отчетливое увеличение концентраций мышьяка, сурьмы, скандия, редких земель и тория с ростом содержаний железа. Тогда как уровни накопления золота, тантала, кальция и бария заметно снижаются с ростом концентраций железа. По всей видимости, это объясняется разными механизмами концентрирования этих элементов, что хорошо подтверждается результатами кластерного анализа (рис. 5).

Рис. 5. Дендрограмма корреляционной матрицы выборки железных руд [3]

На дендрограмме корреляционной матрицы видно, что обособляются две ассоциации элементов – Та, Au, Rb, Cs, Na, U, Ba, Sr, Ca и Sb, Co, Cr, Th, REE, As, Fe. Характерна тесная связь железа с редкими землями.

Полученные данные позволяют сделать следующие предварительные выводы:

- 1. Нахождение редкоземельных и радиоактивных элементов в виде включений собственных минералов в минералах железа могут существенно повлиять на выбор технологии обогащения и переработки железных руд Бакчарского рудного узла;
- 2. Наличие сравнительно повышенных концентраций радиоактивных элементов и собственных минералов урана позволяют надеяться на выявление их повышенных концентраций в обстановках, благоприятных для его концентрирования, что требует дальнейшего изучения [2].

СПИСОК ЛИТЕРАТУРЫ

- Гринёв О.М., Григорьева Е.А., Тюменцева Е.П. Литогеохимическая характеристика основных типов железных руд Бакчарского месторождения // в сб.: Современные проблемы геологии и разведки полезных ископаемых / под ред. А.Ф. Коробейникова. Томск: Изд-во ТГУ, 2010. 189 с.
- 2. Домаренко В.А., Чернев Е.М., Соболев И.С. Возможности обнаружения уранового оруденения гидрогенного типа на востоке Западно-Сибирской плиты // Разведка и охрана недр. 2010. № 11. С. 24–32.
- 3. Ершов В.В., Рихванов Л.П., Пшеничкин А.Я., Арбузов С.И. Уран и торий в рудах Бакчарского железорудного месторождения // Известия Томского политехнического университета. – 2012. – Т. 321. – № 1. – С. 97–104.
- Карепина К.В. Радиогеохимические особенности железоносных отложений Западно-Сибирского пояса на примере Бакчарского пояса (Томская область) // Проблемы геологии и освоения недр: Труды XVI Междунар. симпозиума им. академика М.А. Усова. – Томск, 2012. – С.191–194.

Поступила 23.10.2012 г.