Чжун Ян, студент IV курса Института неразрушающего контроля ТПУ, направление «Приборостроение». E-mail: yan.tchzhun@yandex.ru Область научных интересов: вихретоковый неразрушающий контроль.

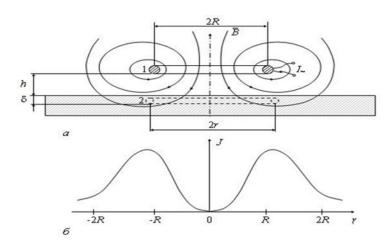
УДК 621.3.014

ФИЗИЧЕСКОЕ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ИЗМЕРИТЕЛЬНЫХ ПРЕОБРАЗОВАНИЙ В ПОЛЯХ ВИХРЕВЫХ ТОКОВ

Чжун Ян

Томский политехнический университет E-mail: yan.tchzhun@yandex.ru

Рассмотрены физические основы вихретокового метода измерительных преобразований и его области применения. Приведены конструкции измерительных преобразователей. Описано экспериментальное исследование трехобмоточного накладного вихре-


токового преобразователя. Получена математическая модель трехобмоточного накладного вихретокового преобразователя. Приведена формула расчета вносимого напряжения преобразователя. Представлены экспериментальные и теоретические годографы вносимого напряжения трехобмоточного накладного вихретокового преобразователя. Показано, что измерительное преобразование в полях вихревых токов может быть использовано для решения различных практических задач.

Ключевые слова:

Вихретоковый метод, вихретоковый преобразователь, математическая модель, годографы.

1. Физические основы вихретокового метода измерительных преобразований

Измерительные преобразования в полях вихревых токов основаны на возбуждении в электропроводящих объектах переменным магнитным полем вихревых токов и зависимости параметров этих токов от свойств объекта [1]. На рис. 1 приведен принцип объяснения возбуждения вихревого тока в электропроводящих объектах.

Рис. 1. Принцип возбуждения вихревых токов (*a*) и радиальное распределение плотности вихревых токов (δ): 1 – обмотка с переменным током; 2 – контур вихревого тока.

Переменный ток обмотки создает вокруг нее переменное магнитное поле (рис. 1, a). В соответствии с законом электромагнитной индукции переменное магнитное поле создает в электропроводящем объекте вихревое электрическое поле, напряженность E которого связана с индукцией B магнитного поля соотношением

$$\mathrm{rot}\bar{E} = -\frac{\partial \bar{B}}{\partial t}.$$

Наличие вихревого электрического поля в электропроводящем объекте приводит к появлению вихревого тока, плотность которого J прямо пропорциональна напряженности электрического поля и удельной электрической проводимости материала σ :

$$\bar{I} = \sigma \bar{E}$$
.

Как показано на рис. 1, δ , плотность вихревых токов максимальна для контуров, радиус r которых при отсутствии зазора (h=0) между обмоткой и поверхностью ОК (объекта контроля) равен радиусу обмотки R. С увеличением зазора радиус контура максимальной плотности r_m возрастает и может быть определен по приближенной формуле:

$$r_m \approx R + 0.75h$$
.

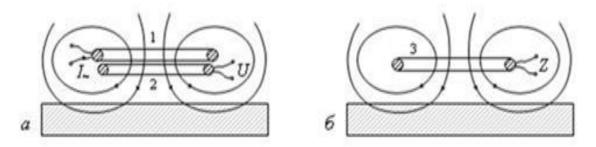
Вихревые токи имеют собственное магнитное поле. Согласно закону Лоренца, переменное магнитное поле вихревых токов стремится противодействовать изменениям магнитного потока, который индуцирует вихревые токи. Поэтому магнитное поле вихревых токов и возбуждающее магнитное поле имеют противоположное направление, вследствие чего результирующее магнитное поле достаточно резко затухает по глубине.

2. Области применения вихретокового метода

Благодаря высокой информативности, а также таким достоинствам, как отсутствие необходимости непосредственного контакта с объектом, безвредность, надежность, высокая производительность и удобство автоматизации, вихретоковое измерительное преобразование нашло широкое применение для решения различных прикладных задач измерения и контроля. Основные сферы использования вихретокового измерительного преобразования следующие: структуроскопия, дефектоскопия, толщинометрия, измерение угловых и линейных геометрических параметров, селективное обнаружение металлических предметов, измерение электрических и магнитных характеристик материалов и изделий, измерение механических напряжений и деформаций и т. д.

В качестве примеров реализации вихретокового метода контроля на рис. 2 показан вихретоковый дефектоскоп ВД3-71 с накладным вихретоковым преобразователем (ВТП), на рис. 3 – вихретоковый толщиномер покрытий Elcometer 355.

Рис. 2. Вихретоковый дефектоскоп с накладным преобразователем ВД3-71

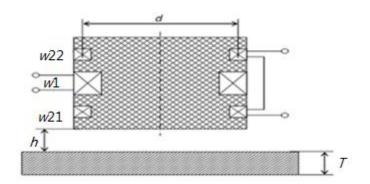

Рис. 3. Вихретоковый толщиномер покрытий Elcometer 355

3. Конструкция измерительных преобразователей

В настоящее время разработано много различных типов и разновидностей ВТП. В связи с этим полезно привести их классификацию.

По рабочему положению относительно объекта контроля ВТП делятся на накладные, проходные и комбинированные.

По типу преобразования параметров объекта контроля в выходной сигнал ВТП подразделяются на трансформаторные и параметрические. В трансформаторных ВТП (рис. 4, a), обладающих минимум двумя обмотками (возбуждающую и измерительную), параметры объекта контроля преобразуются в напряжение U измерительной обмотки, а в параметрических (рис. 4, δ), имеющих, как правило, одну обмотку — в комплексное сопротивление Z.


Рис. 4. Трансформаторный (a) и параметрический (δ) ВТП: 1 – обмотка возбуждения; 2 – измерительная обмотка; 3 – обмотка индуктивности

4. Решаемые задачи

- 1. Получить аналитические выражения для определения зависимости вносимого напряжения трехобомоточного накладного ВТП от изменения удельной электрической проводимости σ , магнитной проницаемости μ_r и зазора h.
 - 2. Осуществить экспериментальную проверку расчетных зависимостей.
- 3. Оценить отличие результатов физического и математического моделирования трехобомоточного накладного ВТП.

5. Экспериментальное исследование накладного вихретокового преобразователя

В эксперименте используем накладный трансформаторный ВТП с тремя обмотками, конструкция которого показана на рис. 5. В состав ВТП входит кроме обмотки возбуждения w_1 и

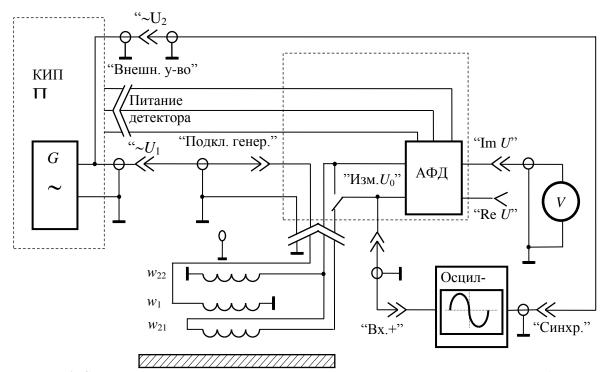


Рис. 5. Конструкция ВТП

измерительной обмотки w_{21} дополнительная компенсирующая обмотка w_{22} , идентичная w_{21} и расположенная симметрично относительно w_1 (рис. 5).

Обмотки w_{21} и w_{22} включены последовательно встречно, их суммарное начальное напряжение при отсутствии объекта контроля равно нулю. Поэтому можно считать, что суммарное напряжение обмоток w_{21} и w_{22} равно вносимому напряжению $\dot{U}_{\rm BH}$ измерительной обмотки.

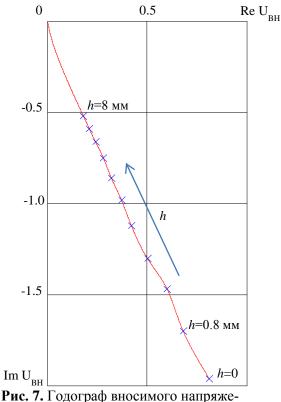

Применяемая схема измерительной установки для исследования измерительных преоб-

Рис. 6. Схема измерительной установки для исследования измерительных преобразований в полях вихревых токов: w_1 – обмотка возбуждения; w_{21} – измерительная обмотка; w_{22} – компенсационная обмотка; V – вольтметр; $KU\Pi$ – коммутационно-измерительная панель; G – источник переменного напряжения; $A\Phi \mathcal{A}$ – амплитуднофазовый детектор

разований в полях вихревых токов показана на рис. 6.

На рис. 7 приведены полученные годографы вносимого напряжения ВТП от изменения зазора h, а на рис. 8 — от изменения удельной электрической проводимости σ .

ния ВТП от изменения зазора h

между ВТП и дюралевой пластиной

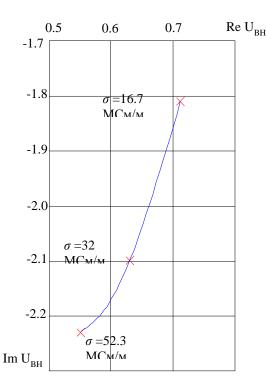


Рис. 8. Годограф вносимого напряжения ВТП от изменения о

Математическая модель накладного вихретокового преобразователя

В состав ВТП входит кроме обмотки возбуждения w_1 , измерительной обмотки w_{21} дополнительная компенсационная обмотка w_{22} .

Предполагается, что обмотки w_{21} и w_{22} расположены симметрично относительно w_1 и включены последовательно встречно, поэтому их суммарное начальное напряжение равно нулю. И можно считать, что суммарное напряжение обмоток w_{21} и w_{22} равно вносимому напряжению $\dot{U}_{
m BH}$ измерительной обмотки.

Комплексное вносимое напряжение двухобмоточного ВТП определяется выражением [2]:

$$\dot{U}_{\rm BH} = j\mu_0 W_{\rm B} W_{\rm H} \omega \dot{I} R \pi \int_0^\infty \varphi_{\rm OK} \cdot \exp\left(-xh^*\right) \cdot J_1\left(x\frac{R_{\rm B}}{R_{\rm H}}\right) \cdot J_1\left(x\frac{R_{\rm H}}{R_{\rm B}}\right) dx, \tag{1}$$

где $j = \sqrt{-1}$ – мнимая единица; $\mu_0 = 4\pi \cdot 10^{-7} \Gamma$ н/м – магнитная постоянная; $w_{\rm H}$, $w_{\rm B}$ – количество витков возбуждающей и измерительной обмоток; $\omega = 2\pi f$ – круговая частота; f – частота тока возбуждения; $R = \sqrt{R_{\rm B}R_{\rm H}}$ – эквивалентный радиус двух обмоток ВТП; $R_{\rm B}$, $R_{\rm H}$ – средние радиусы возбуждающей и измерительной обмоток; $h^* = (h_{\rm R} + h_{\rm W})/{\rm R}$ – обобщенный параметр, характеризующее расстояние между центрами обмоток ВТП и поверхностью объекта контроля; $h_{\rm H},\,h_{\rm B}$ – расстояния от центра соответствующих обмоток ВТП до внешней поверхности объекта контроля; J_1 — функция Бесселя первого рода первого порядка.

Для модели трехобмоточного ВТП (рис. 9) по аналогии с выражением (1) комплексное вносимое напряжение определяется выражением:

$$\dot{U}_{\rm BH} = j\mu_0 w_1 w_{21} \omega \dot{I} R 1\pi \int_0^\infty \varphi_{\rm OK} \cdot \exp(-x h_{21}^*) \cdot J_1\left(x \frac{r_1}{r_{21}}\right) \cdot J_1\left(x \frac{r_{21}}{r_1}\right) dx - j\mu_0 w_1 w_{22} \omega \dot{I} R 2\pi \int_0^\infty \varphi_{\rm OK} \cdot \exp(-x h_{22}^*) \cdot J_1\left(x \frac{r_1}{r_{22}}\right) \cdot J_1\left(x \frac{r_{22}}{r_1}\right) dx,$$

где $R1=R2=\sqrt{r_1r_{21}}=\sqrt{r_1r_{22}}$ – эквивалентный радиус двух обмоток ВТП; r_1 , r_{21} , r_{22} – средние радиусы возбуждающей и измерительной обмоток; $h_{21}^{\ \ *}=(h_1+h_{21})/R$, ${h_{22}}^* = (2h_1 + h_{22})/R$ – обобщенные параметры, характеризующие расстояние между центрами обмоток ВТП и поверхностью объекта контроля; h_1 , h_{21} и h_{21} – расстояния от центра соответствующих обмоток ВТП до внешней поверхности объекта контроля.

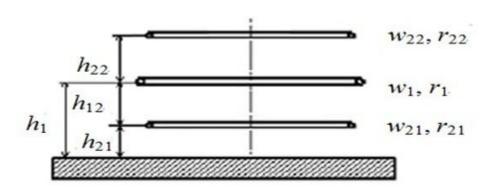


Рис. 9. Расчетная модель трехобмоточного накладного ВТП

Функция влиянии $\varphi_{\rm OK}$ определяется параметрами объект контроля (ОК): $\varphi_{\rm OK} = \frac{\mu_r x - \sqrt{x^2 + \mu_r \cdot \beta^2 j}}{\mu_r x + \sqrt{x^2 + \mu_r \cdot \beta^2 j}}.$

$$\varphi_{\rm OK} = \frac{\mu_r x - \sqrt{x^2 + \mu_r \cdot \beta^2 j}}{\mu_r x + \sqrt{x^2 + \mu_r \cdot \beta^2 j}}.$$

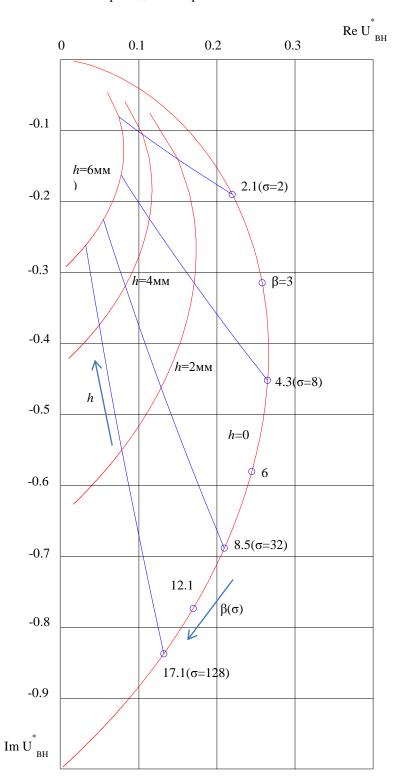
В состав функции влияния $\varphi_{\rm OK}$ входят: $\beta = R \sqrt{\omega \mu_0 \sigma}$ – обобщенный параметр; μ_r – относительная магнитная проницаемость; σ – удельная электрическая проводимость.

В данной математической расчетной модели использовались параметры ВТП, используемые при эксперименте. В соответствии с этим, $w_1 = 600$ витков, $w_{21} = w_{22} = 300$ витков, $r_1 =$ 17,5 · 10^{-3} м, $r_{21} = r_{22} = 16,5 \cdot 10^{-3}$ м, $h_{12} = h_{22} = 10 \cdot 10^{-3}$ м, f = 1000 Гц, $I = \sqrt{2} \cdot 150$ · 10^{-3} A.

Было использовано для теоретических расчетов программное обеспечение Mathcad и получены следующие результаты:

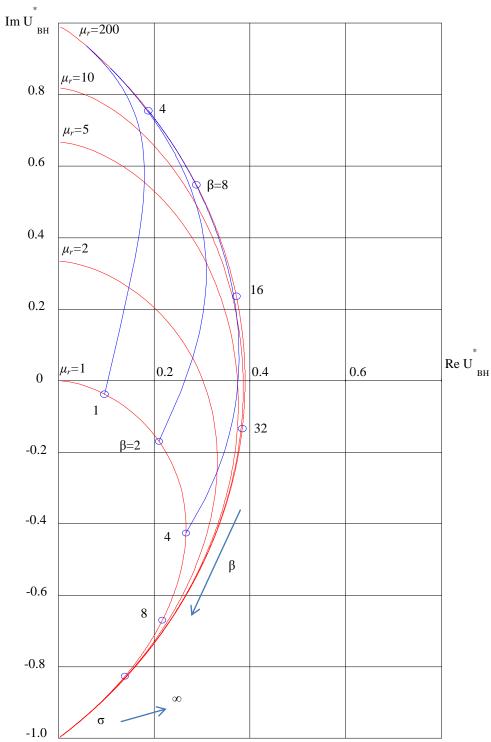
1. Начальное напряжение ВТП при отсутствии ОК ($f = 1000 \, \Gamma$ ц):

$$\dot{U}_0 = 2,281j$$
 (B).

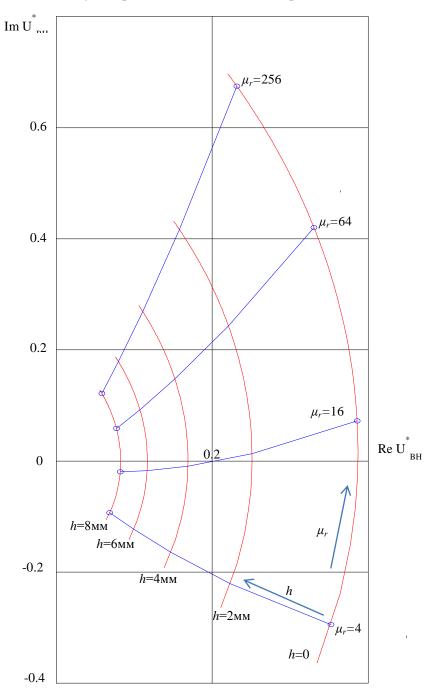

2. Максимальное вносимое напряжение ВТП при наличии дюралевой пластины $(f = 1000 \Gamma \text{II}, h = 0, \beta = 6,17, \mu_r = 1)$:

$$\dot{U}_{\rm BH.max} = 1,451j$$
 (B).

 $=\dot{U}_{
m BH}/\dot{U}_{
m BH.max}$. Максимальное вносимое напряжение $\dot{U}_{
m BH.max}$ определяется при $|arphi_{
m OK}|=1$:


$$\dot{U}_{\text{BH.max}} = j\mu_0 w_1 w_{21} \omega \dot{I} R 1\pi \int_0^\infty \exp(-x h_{21}^*) \cdot J_1\left(x \frac{r_1}{r_{21}}\right) \cdot J_1\left(x \frac{r_{21}}{r_1}\right) dx - j\mu_0 w_1 w_{22} \omega \dot{I} R 2\pi \int_0^\infty \exp(-x h_{22}^*) \cdot J_1\left(x \frac{r_1}{r_{22}}\right) \cdot J_1\left(x \frac{r_{22}}{r_1}\right) dx.$$

Годографы относительного вносимого напряжения ВТП были построены с помощью программного обеспечения Mathcad и приведены на рис. 10–12.


Рис. 10. Годографы $\dot{U}_{\rm BH}^{*}$ трехобомоточного накладного ВТП над электропроводящей немагнитной средой от изменения β и h

На рис. 10 показаны годографы относительного вносимого напряжения ВТП, расположенного над электропроводящим немагнитным полупространством, от изменения удельной электрической проводимости σ (эквивалентно изменению обобщенного параметра β), зазора h между ВТП и поверхностью ОК. Годографы от изменения β для разных значений зазора h показаны на рисунке красными линиями. Годографы от изменения зазора h показаны на рисунке синими линиями.

Рис. 11. Годографы $\dot{U}_{\rm BH}^{\ \ *}$ трехобомоточного накладного ВТП над электропроводящей магнитной средой от изменения μ_r и β

На рис. 11 показаны годографы относительного вносимого напряжения ВТП, расположенного над электропроводящим ферромагнитным полупространством, от изменения удельной электрической проводимости σ и относительной магнитной проницаемости μ_r . Годографы от изменения μ_r для разных значений β обозначены синими линиями, красными линиями показаны годографы от изменения β для разных значений μ_r в интервале 1...200.

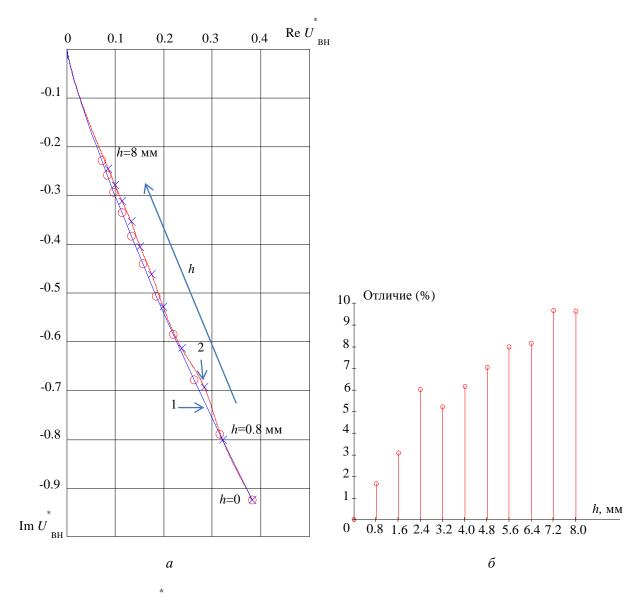


Рис. 12. Годографы $\dot{U}_{\rm BH}^{\ \ *}$ трехобомоточного накладного ВТП над электропроводящей магнитной средой от изменения μ_r и h.

На рис. 12 показаны годографы относительного вносимого напряжения ВТП, расположенного над электропроводящим ферромагнитным полупространством от изменения магнитной проницаемости μ_r и зазора h между ВТП и поверхностью объекта. Годографы от измене-

ния μ_r для разных значений зазора h показаны на рисунке красными линиями. Синие линии – годографы от изменения зазора h.

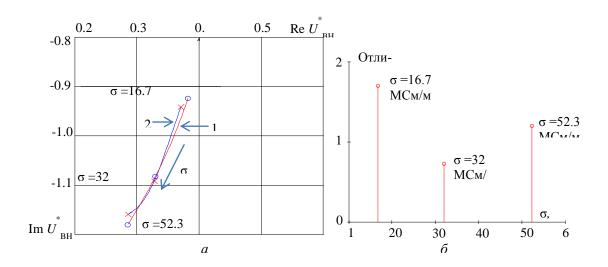

Построены для сравнения теоретические и экспериментальные годографы $U^*_{\rm BH}$ от изменения зазора h (рис. 13) и удельной электрической проводимости σ (рис. 14). Нормировка значений вносимого напряжения $U_{\rm BH}$ производилась при использовании в качестве нормирующего максимального вносимого напряжения ВТП для зазора h=0.

Рис. 13. Годографы $U_{\rm BH}$ трехобомоточного накладного ВТП над дюралевой пластиной от изменения $h\left(a\right)$ и отличие результатов физического и математического моделирования $\left(\delta\right)$: 1 — теоретический годограф; 2 — экспериментальный годограф

На рис. 13, a показаны годографы относительного вносимого напряжения ВТП, расположенного над дюралевой пластиной, от изменения зазора h между ВТП и поверхностью объекта. Теоретический годограф от изменения зазора h показан на рисунке синей линией, а красной линией – экспериментальный годограф.

На рис. 13, δ показано отличие теоретического и экспериментального относительных вносимых напряжений ВТП от изменения зазора h между ВТП и поверхностью объекта. Видно, что максимальное отличие не превышает 10%.

Рис. 14. Годографы $U_{\rm BH}$ трехобомоточного накладного ВТП над дюралевой пластиной от изменения σ (a) и отличие результатов физического и математического моделирования (δ): 1—теоретический годограф; 2—экспериментальный годограф.

На рис. 14, a показаны годографы относительного вносимого напряжения ВТП, расположенного над электропроводящей немагнитной пластиной, от изменения удельной электрической проводимости σ . Теоретический годограф от изменения удельной электрической проводимости σ обозначен на рисунке красной линией, а синей линией показан экспериментальный годограф от изменения удельной электрической проводимости σ .

На рис. 14, δ показано отличие теоретического и экспериментального относительных вносимых напряжений ВТП, расположенного над электропроводящей немагнитной пластиной, от изменения удельной электрической проводимости σ . Видно, что максимальное отличие не превышает 2 %, можно сказать, что экспериментальные годографы совпадают с теоретическими годографами.

Выводы:

- 1. Получены расчетные и экспериментальные годографы $U^*_{\,\,\mathrm{BH}}$ трехобомоточного накладного ВТП над электропроводящей пластиной от изменения электропроводности σ , магнитной проницаемости μ_r и зазора h пластины.
- 2. Зависимости используемого трехобмоточного ВТП аналогичны соответствующим зависимостям для классического двухобмоточного накладного ВТП.
- 3. Экспериментальные годографы отличаются от теоретических годографов не более чем на 10~%.
- 4. Измерительное преобразование в полях вихревых токов может быть использовано для решения различных практических задач.

СПИСОК ЛИТЕРАТУРЫ

- 1. Гольдштейн А.Еэ Физические основы получения информации: учеб. Томск: Изд-во Томского политехнического университета, 2010. 292 с.
- 2. Неразрушающий контроль. Справочник / под ред. В.В. Клюева: в 7 т. Т 2: в 2-х кн.: Кн. 1: Контроль герметичности. Кн. 2: Вихретоковый контроль. М.: Машиностроение, 2003. 688 с.

Поступила 05.07.2013 г.