Савичев Олег Геннадьевич, 1967 г.р., д.г.н., профессор кафедры гидрогеологии, инженерной геологии и гидрогеоэкологии ИГНД ТПУ. Р.т. 42-61-67.

E-mail: OSavichev@mail.ru

Область научных интересов: гидрология, гидрогеохимия, геоэкология.

Камнева Оксана Александровна, аспирант кафедры гидрогеологии, инженерной геологии и гидрогеоэкологии Томского политехнического университета, г. Томск, пр. Ленина, 2, строение 5. Р.т. (3822) 416256.

E-mail:k_ok_al@mail.ru

Область научных интересов: гидрогеология, гидрогеохимия, геоэкология.

УДК 540.42:57.4(571.1)

ХИМИЧЕСКИЙ СОСТАВ ПОДЗЕМНЫХ И БОЛОТНЫХ ВОД ТАЁЖНОЙ ЗОНЫ ЗАПАДНОЙ СИБИРИ В ЕСТЕСТВЕННОМ И НАРУШЕННОМ СОСТОЯНИЯХ

О.Г. Савичев, О.А. Камнева

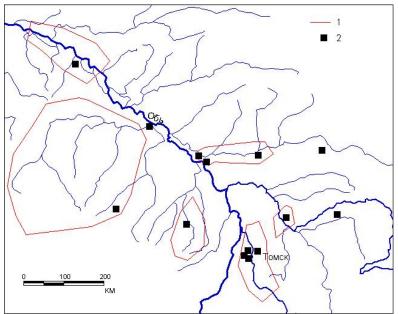
Томский политехнический университет E-mail: osavichav@mail.ru, k ok al@mail.ru

Проведено обобщение данных по химическому составу подземных и болотных вод таёжной зоны Западной Сибири за период с 1960-х гг. по 2009 г. Показано, что наиболее важные, с точки зрения формирования химического состава вод заболоченных территорий, гидрогеохимические процессы протекают на окраинах болотных массивов. Установлено, что рекультивация болот приводит не к восстановлению исходного состояния водно-болотной системы, формированию новой. Выявлен зональный характер в минерализации изменении подземных вод, значительной свидетельствующий o роли гидроклиматических факторов В формировании химического состава. И болотные, и подземные воды в целом находятся в естественном состоянии и по природным причинам содержат в высоких концентрациях органические и биогенные вещества, содержание которых в подземных водах возрастает по мере усиления связи с болотными.

Ключевые слова:

подземные воды, болотные воды, химический состав, таежная зона, Западная Сибирь.

Key words:


underground water, swamp water, chemistry, taiga zone, Western Siberia.

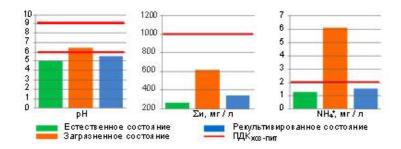
Территория таёжной зоны Западной Сибири характеризуется высокой заболоченностью (более 30 % общей площади), являющейся мощным фактором формирования химического состава поверхностных и подземных вод данного региона [1]. Этот фактор во многом определяет специфику водно-экологической обстановки в регионе. В частности, с заболоченностью водосборов связывается повышенное содержание в природных водах целого ряда веществ, многократно превышающее допустимые нормативы качества, что обусловливает актуальность гидрогеохимических исследований механизмов взаимодействия болотных и подземных вод с учетом влияния хозяйственной деятельности на водно-болотные системы.

В данной работе изложены результаты одного из этапов подобных исследований, в рамках которого авторами было проведено обобщение материалов, полученных в разное время в ОАО «Томскгеомониторинг», Томском политехническом университете (ТПУ) и ряде других научных и производственных организаций. Целью работы является выявление тенденций распределения минерализации, величины рН, окисляемости и содержания азота аммонийного в подземных и болотных водах таёжной зоны Западной Сибири.

Методика исследований

Методика исследований включала в себя отбор проб болотных и подземных вод, обобщение полученных результатов и опубликованных данных. Схема расположения постов гидрохимических наблюдений представлена на рис. 1. Данные о составе подземных вод в значительной степени получены в результате обобщения материалов многолетних наблюдений (период с 1960-х гг. по 2009 г.) ОАО «Томскгеомониторинг», данные о болотных водах — по материалам исследований Томского политехнического университета (ТПУ) и ОАО «Томскгеомониторинг». Лабораторные работы по определению состава болотных вод выполнялись по аттестованным методикам в аккредитованных лабораториях ОАО «Томскгеомониторинг» и ТПУ.

Рис. 1. Схема расположения района исследований: 1 — границы участков гидрогеохимических наблюдений болотных вод; 2 — скважины гидрогеохимических наблюдений подземных вод


Описание используемых методов отбора проб и определения содержаний различных веществ, а также характеристика природных условий приведены в [2]. Полевые работы выполнены совместно с В.А. Базановым и А.А. Скугаревым; обобщение и анализ результатов исследований проводились при участии и поддержке Ю.В. Макушина, С.Л. Шварцева и В.А. Базанова.

Анализ полученных данных по химическому составу вод проведен с использованием методов математической статистики, включая расчет средних показателей за многолетний период и их погрешности определения. Среднее значение определяется в зависимости от числа лет наблюдений и рассчитывается как среднее арифметическое. Погрешность определения — через среднюю квадратическую погрешность или стандартное отклонение.

Общая характеристика подземных и болотных вод

Таёжная зона Западной Сибири характеризуется широким распространением олиготрофных выпуклых и мезотрофных болот. Высока доля и евтрофных болот. Так, на территории Томской области, занимающей значительную часть рассматриваемого региона, общая заболоченность составляет 37 % (от 316,9 тыс. км²), доля общей территории, занятой олиготрофными болотами — 17 %, мезотрофных — 15,6 %, евтрофных — 4,4 %. Средняя мощность торфяной залежи превышает 2 м. Суммарные запасы воды в болотах только в Томской области составляют около 220 км³ [2].

Болотные воды региона в естественном состоянии характеризуются как слабокислые (олиготрофные и мезотрофные, реже евтрофные) или нейтральные (евтрофные), пресные с малой и средней минерализацией (до 200 и 200..500 мг/л соответственно). Минерализация вод олиготрофных и мезотрофных болот обычно заметно меньше, чем евтрофных (табл. 1). Болотные воды региона характеризуются высоким содержанием органических веществ, азота аммонийного и ряда других веществ (не рассматриваются в работе). В связи с этим нарушение установленных в России нормативов качества наблюдается для болотных вод повсеместно и постоянно (рис. 2), что делает невозможным их использование в хозяйственно-питьевых целях.

Рис. 2. Средний химический состав болотных вод таежной зоны Западной Сибири в естественном, загрязненном и рекультивированном состояниях в сравнении с нормативами качества вод хозяйственнопитьевого водоснабжения

Таблица 1. Химический состав болотных вод

Тип болота	Состояние	Пока- затель*	pН	$\Sigma_{_{\mathrm{H}}}$, мг/л	NH ₄ ⁺ , мг/л	ХПК, мгО₂/л	Количество проб
	I	ТДК _{хоз-пит}	6–9	1000	2,0	_	
Ozverozno dve vš		A	4,38	196,8	1,159	322,13	28
Олиготрофный	Естественное	δΑ	0,26	85,3	0,257	52,53	
Мезотрофный	Естественное	A	5,05	506,2	0,939	307,88	9
мезотрофныи	Естественное	δΑ	0,37	343,1	0,341	151,55	
Евтрофный	Естественное	A	5,81	114,2	1,653	228,51	15
свтрофныи	Естественное	δΑ	0,24	39,5	0,301	50,59	45
Все типы	Естественное	A	5,16	230,1	1,326	277,29	82
все типы		δΑ	0,18	83,2	0,177	42,72	02
Олиготрофный	Загрязненное	A	6,33	_	0,865	500,97	10
Олиготрофныи		δΑ	0,33	_	0,190	432,99	10
Мезотрофный	Загрязненное	A	5,73	83,0	1,775	141,85	8
мезотрофныи		δΑ	0,37	22,7	0,491	27,90	0
Ептрофиції	Загрязненное	A	7,25	1134,2	15,68	494,43	8
Евтрофный	Загрязненное	δΑ	0,13	182,1	9,369	165,25	8
Олиготрофный	Осушенное	A	5,70	270,1	2,209	214,20	3
Олиготрофныи		δΑ	1,40	219,8	1,291	37,40	3
Ozverozno dve vš	Гарь на	Α	5,27	284,9	1,553	338,60	3
Олиготрофный	осушенном болоте	δΑ	0,81	229,3	0,490	62,01	3
Опитотпофици	Рекультивированный	Α	5,73	476,4	0,867	99,45	3
Олиготрофный	участок	δΑ	1,98	415,3	0,051	36,25] 3

 Π римечание — A — средний арифметический показатель; δ A — погрешность определения.

Учитывая, что в пределах заболоченных участков рассматриваемой территории достаточно интенсивно добывается нефть и газ, целесообразно рассмотреть, какие изменения в состоянии болотных вод произошли в результате хозяйственной деятельности. С этой целью был выполнен анализ данных государственного и локального мониторинга, который показал, что при осушении или рекультивации загрязненных участков олиготрофных болот происходит трансформация химического состава болотных вод по типу, характерному не для олиготрофных, а для евтрофных болот (табл. 1). Кроме того, было установлено, что при сбросе сточных вод в болота или аварийных разливах нефти и минерализованных вод, используемых для поддержания пластового давления, изменения в химическом составе болотных вод обычно наблюдаются в пределах 100..300 м от источника загрязнения (табл. 2). Наиболее существенные отклонения содержаний от обычных для конкретного типа болот значений часто прослеживаются на локальных участках до нескольких десятков метров [3].

таолица 2. Средний хими теский состав облотивка вод в райс									
Показатель	Данные за 1967 г. [5]	В 25–300 м от выпуска стоков ЖКХ с. Мельниково [3]							
pН	7,2	7,6							
$\Sigma_{\rm m}$, mγ/π	515,0	1061,2							
NH ₄ ⁺ , мг/л	0,3	25,91							
ХПК, мгО₂/л	_	420,14							
Количество проб	8	2_5							

Таблица 2. Средний химический состав болотных вод в районе с. Мельниково

В результате проведенных исследований можно сделать вывод, что влияние антропогенных факторов на гидрохимические показатели болотных вод на большей части таёжной зоны Западной Сибири в значительной степени зависит от интенсивности водообмена в болотных биогеоценозах — чем она больше, тем больше зона загрязнения [2, 4].

В пределах таежной зоны Западной Сибири основной гидрогеологической структурой первого порядка является Западно-Сибирский артезианский бассейн, являющийся одним из наиболее крупных аккумуляторов подземных вод нашей планеты. В разрезе мезозойско-кайнозойских отложений бассейна выделяются два гидрогеологических этажа с резко различными условиями формирования подземных вод. Этажи разделены мощным региональным водоупором верхнемелового-палеогенового возраста [6, 7]. В рамках работы рассматривалась только верхняя часть разреза в пределах развития водовмещающих отложений неогенчетвертичного и палеогенового возраста. Отложения представлены песками, глинами, алевритами, песчаногравийно-галечниковыми отложениями; в гидродинамическом отношении являются единой водонасыщенной системой с тесной гидравлической взаимосвязью.

Водоносный комплекс неоген-четвертичных отпожений является первым от поверхности, его подземные воды тесно взаимосвязаны и циркулируют в зоне свободного водообмена, что делает их легкодоступными для процессов загрязнения. Естественные условия формирования грунтовых вод определяются в основном гидроклиматическими факторами. Для данных водоносных отложений наблюдается хорошо выраженное увеличение минерализации незагрязненных подземных вод с северовостока на юго-запад (табл. 3). В нарушенном состоянии наблюдаются несколько повышенные минерализации подземных вод, но в целом зональность сохраняется.

По классификации О.А. Алекина грунтовые воды обычно пресные со средней и, реже, повышенной минерализацией, гидрокарбонатные кальциевые или гидрокарбонатные кальциевомагниевые, нейтральные [6, 7, 8].

Грунтовые воды непосредственно связаны с болотными, что определяет высокий уровень содержания органических веществ по окисляемости, отмеченный как для естественного, так и нарушенного состояния подземных вод. Повышенное содержание органических веществ приводит к формированию высоких концентраций азота аммонийного, образующегося при их частичном разложении в водной среде [9].

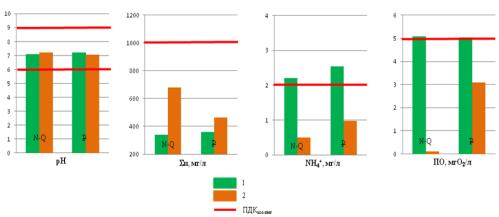
Средний уровень перманганатной окисляемости в таёжной части бассейна Средней Оби составляет 5,09 мгС/л (табл. 3).

Таблица 3. Химический состав полземных вол неоген-четвертичных и палеогеновых отложений

Населенный пункт	Горизонт	Состояние	Пока- затель	рН	□и, мг/л	NH ₄ ⁺ , мг/л	ПО, мгС/л	Количество проб
ПДК _{хоз-пит}				6–9	1000	2,0	5,0	
		Воды неоген-четв	ертичных (отложен	ий		•	
A ====================================	Q _{III} ec		A	7,18	358,75	2,21	4,65	57
Александровское		естественное	σ	0,13	11,93	0,28	0,21	
Гонцов	Q _{II} tb	естественное	A	7,19	340,86	0,90	3,27	63
Бакчар			σ	0,13	26,50	0,21	0,22	
Белый Яр	Q _{III} +Q _{II} tb	естественное	A	6,85	181,67	1,03	5,54	72
			σ	0,12	4,87	0,12	0,33	
Усть-Озерное	Q _{II} tb ec	естественное	A	6,88	92,73	0,56	3,04	- 56
			σ	0,11	6,54	0,08	0,21	
Каргасок	$Q_{\rm III}$ + \mathbf{P}_3	естественное	A	7,09	276,09	1,46	4,05	64
			σ	0,12	18,64	0,31	0,33	

Продолжение таблицы на следующей странице

Колпашево	Q_{IV}	естественное	A	7,18	307,77	1,12	3,31	76
Колнашево	QIV		σ	0,10	13,96	0,16	0,30	70
Тегульдет	Q_{IV}		A	7,36	425,24	2,68	8,96	64
		естественное	σ	0,13	7,79	0,28	0,69	64
Т	0	естественное	A	7,27	500,28	2,83	9,36	60
Тегульдет	$Q_{\rm III}$		σ	0,10	13,50	0,32	0,70	
Вне нас. пункта (у	0		A	6,86	562,35	1,52	3,61	67
Кафтанчиково)	$Q_{\rm III}$	естественное	σ	0,33	25,22	0,66	0,56	07
Беляй	0	нарушанна	A	7,22	678,01	0,50	0,10	10
икиэд	$Q_{\rm III}$	нарушенное	σ	0,06	243	0,40	0,05	10
		Воды палеоге	новых отло	эжений				
A	D		A	7,40	258,94	4,28	4,02	57
Александровское	\mathbf{P}_3 nm	естественное	σ	0,15	21,37	0,66	0,57	57
Forres (In	D.I.		A	7,10	193,04	1,51	6,20	73
Белый Яр	\mathbf{P}_{3} lg	естественное	σ	0,11	10,55	0,20	0,33	13
I/	₽ ₃ nm	естественное	A	7,10	347,60	2,14	5,26	75
Каргасок			σ	0,10	26,07	0,34	0,36	
Vonnacor	₽ ₂ jr	естественное	A	7,11	504,76	3,55	5,73	62
Каргасок			σ	0,13	19,53	0,74	0,43	
T.C.	₽ ₃ at	естественное	A	7,19	457,85	4,09	6,22	60
Каргасок	F 3at		σ	0,13	25,54	0,66	0,59	
П	D	200000000000000000000000000000000000000	A	7,42	305,98	1,60	5,16	60
Пудино	\mathbf{P}_{3} nm	естественное	σ	0,12	25,11	0,28	0,50	
Малиновка	Р ₃ nm естественно		A	7,06	455,33	0,59	2,67	78
		естественное	σ	0,10	21,95	0,14	0,22	
T.	D :		A	6,69	543,88	0,34	1,83	20
Томск	\mathbf{P}_{2} jr	нарушенное	σ	0,05	28,73	0,05	0,13	38
Колпашево	P_3 nm+ P_2 jr нарушенное		A	7,12	334,74	1,58	5,52	10
		σ	0,25	26,70	0,21	0,00	10	
Тогур	Р 2 j г нарушенное		A	7,52	317,69	1,40	3,62	10
		σ	0,13	28,05	0,22	0,52	10	
M	D:	нарушенное	A	6,93	659,31	0,61	1,41	10
Моряковский Затон	оряковский Затон P_2 jг		σ	0,53	53,65	0,51	0,51	10


Естественные условия формирования напорных вод *палеогеновых отпожений* определяются в основном степенью изолированности их от поверхности земли, обусловленной глубиной залегания и наличием водоупоров в перекрывающей толще.

Как и в случае грунтовых вод, для незагрязненных подземных вод неогеновых и палеогеновых отложений характерно увеличение минерализации с северо-востока на юго-запад, а также в вертикальном разрезе по мере увеличения возраста водоносных отложений [8]. В нарушенном состоянии эти закономерности также сохраняются.

Подземные воды данных отложений в естественных условиях обычно пресные со средней и повышенной минерализацией, гидрокарбонатные кальциевые или гидрокарбонатные кальциевомагниевые, нейтральные, а в районах размещения населённых пунктов и крупных предприятий – пресные с повышенной минерализацией и солоноватые с разнообразным катионным и анионным составом.

Для рассматриваемых отложений характерна меньшая взаимосвязь с болотными водами, что определяет и меньшие значения окисляемости и иона аммония (по сравнению с грунтовыми водами). Ввиду тесной взаимосвязи и свободного водообмена внутри всего водоносного комплекса, уровень содержания органических веществ остается достаточно высоким и составляет в среднем 4,89 мгС/л (табл. 3).

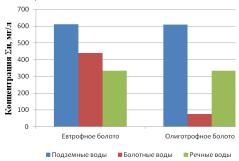

Качество подземных вод, также как и болотных, не соответствует установленным в РФ нормативам (рис. 3). Нарушение качества отмечается по содержанию ионов аммония и по перманганатной окисляемости. Без специальной водоподготовки использование подземных вод таежной зоны для хозяйственно-питьевых целей невозможно.

Рис. 3. Средний химический состав подземных вод неоген-четвертичных (N-Q) и палеогеновых отложений (P) таежной зоны Западной Сибири в естественном (1) и нарушенном (2) состояниях в сравнении с нормативами качества вод хозяйственно-питьевого водоснабжения

Таким образом, подземные воды зоны свободного водообмена региона имеют выраженный зональный характер изменения минерализации и в естественном, и в нарушенном состояниях. Для данных вод характерны высокие содержания органических веществ (как следствие, азота аммонийного), что объясняется преимущественно природными факторами, в частности, заболоченностью областей питания и тесной связью с болотными водами.

Обобщение данных о химическом составе болотных и подземных вод в таёжной зоне Западной Сибири показало, что в естественных условиях суммарное содержание растворённых солей на территориях распространения олиготрофных болот убывает в ряду «подземные воды — речные воды — болотные воды», а на территориях распространения евтрофных болот — «подземные воды — болотные воды — речные воды» (рис. 4, табл. 4).

Рис. 4. Соотношение суммарного содержания растворённых солей в подземных, болотных и речных водах на территориях распространения евтрофных и олиготрофных болот

При этом следует отметить, что на границе болотных и лесных ландшафтов происходит интенсивное насыщение поверхностных вод различными неорганическими и органическими веществами, что объясняется (в случае олиготрофных болот), во-первых, контактом кислых болотных вод, содержащих большое количество фульвокислот, с минеральным грунтом и последующим образованием водорастворимых и коллоидных комплексов. Во-вторых, на окраинах болот (и олиготрофных, и евтрофных) скапливаются значительные количества воды и формируются направленные потоки, с которыми и выносятся образовавшиеся соединения. В-третьих, при движении потоков воды происходит размыв почвогрунтов и формирование стока взвешенных и влекомых наносов, сопровождающееся увеличением площади контакта воды и частиц породы, сорбцией на поверхности последних некоторых растворенных и коллоидных веществ и т.д. [2].

Таблица 4. Средний химический состав природных вод Васюганского болота и прилегающих территорий

Показатель	Подземные воды	Участки	Васюганског		р. Чая	
	палеогеновых отложений с. Чажемто	евтроф- ный	мезо- трофный	олиго- трофный	р. Бакчар п. Горе-ловка	с. Под- горное
рН	6,93	6,00	5,34	4,70	7,20	7,33
Σи, мг/л	610,5	439,2	139,9	75,7	333,8	411,0
NH_4^+ , мг/л	1,79	2,02	1,10	1,51	2,28	0,86
ХПК, мгО2/л	_	182,6	160,2	296,6	50,6	43,4
Количество проб	3	3	7	11	34	22

Выводы

Анализ полученных результатов позволяет сделать следующие выводы. Во-первых, наиболее важные, с точки зрения формирования химического состава вод заболоченных территорий, гидрогеохимические процессы протекают на окраинах болотных массивов. Во-вторых, осушение и рекультивация загрязненных участков верховых болот приводят к трансформации химического состава их вод по типу, характерному для низинных болот. В-третьих, в изученных природных водах практически повсеместно, независимо от степени и характера антропогенного воздействия, в повышенных концентрациях присутствуют органические вещества (по величине окисляемости) и ион аммония NH_4^+ . В-четвертых, значительное химическое загрязнение болотных вод в регионе пока ограничено локальными участками.

В пределах таёжной зоны Западной Сибири сосредоточены значительные ресурсы пресных подземных вод. Рассмотренные подземные воды неоген-четвертичных и палеогеновых отложений имеют хорошо выраженный зональный характер в изменении минерализации, наблюдаемый как в естественном, так и в нарушенном состояниях. Такая зональность свидетельствует о значительной роли в формировании химического состава подземных вод гидроклиматических условий.

Для подземных вод таежной зоны характерны высокие содержания органических веществ и азота аммонийного, наблюдаемые и для грунтовых вод неоген-четвертичных отложений, и для напорных вод палеогеновых отложений. Такие концентрации обусловлены преимущественно природными условиями формирования подземных вод, в частности, заболоченностью территории и областей питания и тесной связью с болотными водами.

В большинстве случаев рассматриваемые подземные воды не соответствуют установленным нормативам качества по величине перманганатной окисляемости и по содержанию азота аммонийного. С учётом этого на большей части региона использование подземных вод без специальной водоподготовки невозможно. В целом же, подземные воды в сравнении с поверхностными в таежной зоне отличаются более высоким качеством. Приоритетное использование пресных подземных вод – хозяйственно-питьевое водоснабжение.

СПИСОК ЛИТЕРАТУРЫ

- 1. Болота Западной Сибири. Их строение и гидрологический режим. Л.: Гидрометеоиздат, 1976. 447 с.
- 2. Савичев О.Г. Водные ресурсы Томской области. Томск: Изд-во Томского политехн. ун-та, 2010. 248 с.
- 3. Льготин В.А., Савичев О.Г. Оценка допустимых сбросов загрязняющих веществ в болота Томской области // Водоснабжение и санитарная техника. − 2007. №5. − С. 33-38.
- 4. Савичев О.Г. Химический состав болотных вод на территории Томской области (Западная Сибирь) и их взаимодействие с минеральными и органоминеральными соединениями // Известия Томского политехнического университета. 2009. Т. 314. № 1. С. 72–77.
- 5. Рассказов Н.М., Удодов П.А., Назаров А.Д., Емельянова Т.Я. Болотные воды Томской области // Известия Томского политехнического института, 1975, Т.297, С.102-117.
- 6. Ресурсы пресных и маломинерализованных подземных вод южной части Западно-Сибирского артезианского бассейна / под ред. Е.В. Пиннекера, И.П. Васильева, Н.А. Ермашовой и др. М.: Недра, 1991. 262 с.
- 7. Состояние геологической среды (недр) территории Сибирского федерального округа в 2008 г.: Информационный бюллетень / под ред. В.А. Льготина. Вып. 5. Томск: ОАО "Томскгеомониторинг", 2009 г. 166 с.
- 8. Ермашова Н.А. Геохимия подземных вод зоны активного водообмена Томской области в связи с решением вопросов водоснабжения и охраны. Автореф. на соиск. учен. степ. к.г.-м.н. Томск: Томск. политехн. ун-т, 1998. 44 с.
- 9. Шварцев С.Л. Гидрогеохимия зоны гипергенеза / С.Л. Шварцев. 2-е изд. М.: Недра, 1998. 366 с.